Toggle light / dark theme

Fourth Eurosymposium on Healthy Ageing

There is a 3-day conference in Brussels on November 8–10 for those of you in Europe interested in aging research.


The Eurosymposium on Healthy Ageing (EHA) is an international event that provides a unique opportunity for researchers, government officials, biotech executives, entrepreneurs, and non-governmental institutions from around the world to meet, network, and forge new scientific collaborations.

New class of drug compounds puts cancer in a sleeper hold

Cancer isn’t some foreign illness invading your body – it’s essentially just regular cells dividing out of control. Current cancer treatments like chemotherapy and radiotherapy are designed to kill tumors, but they often take down healthy cells as well. An emerging technique could provide a more targeted approach, stopping tumorous cells from proliferating and effectively putting the cancer to sleep.

Lyme disease now found in all 50 states

If you thought you were safe from Lyme disease because you don’t live in New England, where the tick-borne illness first appeared, think again. Now, all 50 states plus the District of Columbia have residents who have tested positive for Lyme, a bacterial infection that can cause a wide variety of symptoms, including joint aches, fatigue, facial palsy and neck stiffness.

This news comes from a report from the clinical laboratory Quest Diagnostics, which analyzed the results of 6 million blood tests doctors had ordered to diagnose Lyme disease in their patients. The report found that Pennsylvania had the most positive cases last year: 10,001.

The Pennsylvania tally, along with that of the six New England states — Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont — accounted for about 60 percent of the country’s Lyme disease cases. Positive results grew by 50 percent in New England and by 78 percent in Pennsylvania from 2016 to 2017.

New system allows rapid response to heart attacks, limits cardiac damage

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have developed a drug-delivery system that allows rapid response to heart attacks without surgical intervention. In laboratory and animal testing, the system proved to be effective at dissolving clots, limiting long-term scarring to heart tissue and preserving more of the heart’s normal function.

“Our approach would allow health-care providers to begin treating heart attacks before a patient reaches a surgical suite, hopefully improving patient outcomes,” says Ashley Brown, corresponding author of a paper on the work and an assistant professor in the Joint Biomedical Engineering Program (BME) at NC State and UNC. “And because we are able to target the blockage, we are able to use powerful drugs that may pose threats to other parts of the body; the targeting reduces the risk of unintended harms.”

Heart attacks, or myocardial infarctions, occur when a thrombus – or clot – blocks a blood vessel in the heart. In order to treat heart attacks, doctors often perform surgery to introduce a catheter to the blood vessel, allowing them to physically break up or remove the thrombus. But not all patients have quick access to surgical care.

Beyond the Hard Drive: Encoding Data in DNA

This article is part of a series about how OS Fund (OSF) companies are radically redefining our future by rewriting the operating systems of life. Or as we prefer to think about it: Step 1: Put a dent into the universe. And Step 2: Rewrite the universe. You can see the full OSF collection here and read more about Building a Biological Immune System.

In contemplating the future, I love imagining how our daily lives today will be thought of in the future. What appears sci-fi to us today but will be “normal” 50 years from now? What inefficient and boneheaded things do we do today that future generations will look back and laugh at?

Seeing beyond what’s possible is a rare skill. Being able to design and build beyond what’s possible is even more rare. Put together, this is the unique set of skills and abilities that OSF founders all have in common. Most importantly, they’ve chosen to focus their abilities to tackling the biggest problems humanity faces.

Employees at Google, Amazon and Microsoft Have Threatened to Walk Off the Job Over the Use of AI

There is. Our engagement with AI will transform us. Technology always does, even while we are busy using it to reinvent our world. The introduction of the machine gun by Richard Gatling during America’s Civil War, and its massive role in World War I, obliterated our ideas of military gallantry and chivalry and emblazoned in our minds Wilfred Owen’s imagery of young men who “die as Cattle.” The computer revolution beginning after World War II ushered in a way of understanding and talking about the mind in terms of hardware, wiring and rewiring that still dominates neurology. How will AI change us? How has it changed us already? For example, what does reliance on navigational aids like Waze do to our sense of adventure? What happens to our ability to make everyday practical judgments when so many of these judgments—in areas as diverse as credit worthiness, human resources, sentencing, police force allocation—are outsourced to algorithms? If our ability to make good moral judgments depends on actually making them—on developing, through practice and habit, what Aristotle called “practical wisdom”—what happens when we lose the habit? What becomes of our capacity for patience when more and more of our trivial interests and requests are predicted and immediately met by artificially intelligent assistants like Siri and Alexa? Does a child who interacts imperiously with these assistants take that habit of imperious interaction to other aspects of her life? It’s hard to know how exactly AI will alter us. Our concerns about the fairness and safety of the technology are more concrete and easier to grasp. But the abstract, philosophical question of how AI will impact what it means to be human is more fundamental and cannot be overlooked. The engineers are right to worry. But the stakes are higher than they think.

Facebook’s chief AI scientist says that Silicon Valley needs to work more closely with academia to build the future of artificial intelligence

That’s what we are after, with AI. Understanding intelligence in machines, animals and humans, is one of the great scientific challenges of our times and building intelligent machines is one of the greatest technological challenges of our times. No single entity in industry, academia or public research has a monopoly on the good ideas that will achieve these goals. It’s going to take the combined effort of the entire research community to make progress in the science and technology of intelligence.


Facebook is taking an unusual recruitment model championed in law and medicine and applying it to artificial intelligence — and it’s working.

Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women

Evolutionary theory predicts that reproduction entails costs that detract from somatic maintenance, accelerating biological aging. Despite support from studies in human and non-human animals, mechanisms linking ‘costs of reproduction’ (CoR) to aging are poorly understood. Human pregnancy is characterized by major alterations in metabolic regulation, oxidative stress, and immune cell proliferation. We hypothesized that these adaptations could accelerate blood-derived cellular aging. To test this hypothesis, we examined gravidity in relation to telomere length (TL, n = 821) and DNA-methylation age (DNAmAge, n = 397) in a cohort of young (20–22 year-old) Filipino women. Age-corrected TL and accelerated DNAmAge both predict age-related morbidity and mortality, and provide markers of mitotic and non-mitotic cellular aging, respectively. Consistent with theoretical predictions, TL decreased (p = 0.031) and DNAmAge increased (p = 0.007) with gravidity, a relationship that was not contingent upon resource availability. Neither biomarker was associated with subsequent fertility (both p 0.3), broadly consistent with a causal effect of gravidity on cellular aging. Our findings provide evidence that reproduction in women carries costs in the form of accelerated aging through two independent cellular pathways.

/* */