Toggle light / dark theme

Building a better brain

Like a team in a science fiction movie, the six-lab squad funded by a 2017 MEDx Biomedical research grant is striking in its combination of diverse skills and duties.

The project is led by Kafui Dzirasa, MD’09, Ph.D.’07, HS’10-’16, associate professor of psychiatry and behavioral sciences and assistant professor in neurobiology and neurosurgery; and Nenad Bursac, Ph.D., professor of biomedical engineering and associate professor in medicine. Their team includes: Marc Caron, Ph.D., James B. Duke Professor of Cell Biology, professor in neurobiology and medicine; Fan Wang, Ph.D., professor of neurobiology; Christopher Kontos, MD, HS’93-’97, professor of medicine and associate professor of pharmacology and cancer biology—all at Duke University School of Medicine—and Jennie Leach, Ph.D., associate professor of chemical, biochemical, and environmental engineering at the University of Maryland Baltimore County, along with a cadre of committed graduate students, postdocs, and technicians.

Dzirasa’s background in engineering informs his approach to the study of neuropsychiatric illness and disease. In the summer of 2016, he and members of his lab were discussing the challenge of precisely monitoring .

The Rejuvenation Roundup

We have now launched the Rejuvenation Roundup Podcast, a monthly podcast accompanying our regular Rejuvenation Roundup digest. Check out the first episode of this new show hosted by Ryan O’Shea from Future Grind.


Brought to you by Nicola Bagalà, the Rejuvenation Roundup is our monthly digest, which takes a look at the big news stories involving the industry and helps keep you informed of current developments in the aging research field. Hosted by Ryan O’Shea of the Future Grind podcast, the Rejuvenation Roundup podcast is a regular podcast that complements the monthly written Roundup articles that we publish here on the blog. The podcast aims not to replace the regular written Roundup articles but to offer a deeper dive into some of the key stories, and it includes quotes and interviews from industry leaders. We suggest enjoying both written and podcast versions every month!

Ryan covers a variety of topics from a busy July in the rejuvenation biotechnology field, including the placement of “ageing-related” into the 11th revision of WHO’s International Classification of Diseases (ICD-11) along with insights from industry leaders about developing news in the field. You can find the accompanying July Rejuvenation Roundup article here, where Nicola brings you more industry news not covered in the podcast.

Deep Knowledge Analytics announces the publication of a new analytical report titled Longevity Industry in UK Landscape Overview

845 pages in length, the report aims to outline the history, present state and future of the Longevity Industry in the United Kingdom, profiling hundreds of companies, investors, and trends, and offering guidance on the most optimal ways in which UK longevity industry stakeholders, as well as government officials, can work to strengthen the industry, and allow it to reach its full potential as a global longevity science and preventive medicine hub. The report uses comprehensive infographics to distill the report’s data and conclusions into easily understandable portions, and interested readers can get a quick understanding of the report’s main findings and conclusions in its 10-page executive summary.

This special regional case study follows-up on the content and general outline of the Longevity Industry made by our consortium in the previous Longevity Industry Landscape Overviews, including Volume I “The Science of Longevity” (750 pages), and Volume II “The Business of Longevity” (650 pages), published earlier this year.

These ongoing analytical reports are part of a collaborative project by The Global Longevity Consortium, consisting of the Biogerontology Research Foundation, Deep Knowledge Analytics, Aging Analytics Agency and the Longevity. International platform.

Boy Who Had a Chunk of Brain Removed Turned Out Healthy

The strange case of a young boy who had a large section of his brain removed shows just how good the human brain is at repairing itself — or at least making the most of a tough situation. Beyond being just a lump of tissue that named itself, the brain is also a kind of wonderful, wet computer that’s capable of rewiring itself in response to new experiences like taking drugs, forming new memories, and making friends. In extreme cases, like that of a 6-year-old boy who had about one-sixth of his brain removed, the brain can even adapt to getting cut apart.

Doctors documented the boy’s case in a paper published July 31 in the journal Cell Reports. They report that despite the boy having a significant portion of his brain removed, including the portion associated with visual processing, the boy has developed into a healthy 10-year-old. And while he still can’t see in the left side of his field of vision, his brain has reconfigured some of the lost connections so that he is able to recognize people’s faces. All in all, the doctors see it as a successful procedure, as well as evidence of the brain’s plasticity — its ability to adapt — when it comes to higher-order functions.

“He is essentially blind to information on the left side of the world. Anything to the left of his nose is not transmitted to his brain, because the occipital lobe in his right hemisphere is missing and cannot receive this information,” Marlene Behrmann, Ph.D., a professor of psychology at Carnegie Mellon University and the corresponding author on the paper, tells New Scientist.

Researchers successfully transplant bioengineered lung

A research team at the University of Texas Medical Branch have bioengineered lungs and transplanted them into adult pigs with no medical complication.

In 2014, Joan Nichols and Joaquin Cortiella from The University of Texas Medical Branch at Galveston were the first research team to successfully bioengineer human lungs in a lab. In a paper now available in Science Translational Medicine, they provide details of how their work has progressed from 2014 to the point no complications have occurred in the pigs as part of standard preclinical testing.

“The number of people who have developed severe lung injuries has increased worldwide, while the number of available transplantable organs have decreased,” said Cortiella, professor of pediatric anesthesia. “Our ultimate goal is to eventually provide new options for the many people awaiting a transplant,” said Nichols, professor of internal medicine and associate director of the Galveston National Laboratory at UTMB.

Grow-your-own organs could be here within five years, as scientists prove they work in pigs

Grow-your-own organs could be available for desperately ill patients within five years, after scientists successfully transplanted bioengineered lungs into pigs for the first time.

The team at the University of Texas Medical Branch (UTMB) showed that lab-grown organs were quickly accepted by the animals, and within just two weeks had developed a network of blood vessels.

Previous attempts have failed with several hours of transplantation because the organs did not establish the complicated web of vessels needed for proper oxygen and blood flow.

Small amounts of pharmaceuticals found in north central Pa. rural well water

Drinking water from wells in rural north central Pennsylvania had low levels of pharmaceuticals, according to a study led by Penn State researchers.

Partnering with volunteers in the University’s Pennsylvania Master Well Owner Network, researchers tested water samples from 26 households with private wells in nine counties in the basin of the West Branch of the Susquehanna River. All samples were analyzed for seven over-the-counter and prescription pharmaceuticals: acetaminophen, ampicillin, caffeine, naproxen, ofloxacin, sulfamethoxazole and trimethoprim.

At least one compound was detected at all sites. Ofloxacin and sulfamethoxazole—antibiotics prescribed for the treatment of a number of bacterial infections—were the most frequently detected compounds. Caffeine was detected in approximately half of the samples, while naproxen—an anti-inflammatory drug used for the management of pain, fever and inflammation—was not detected in any samples.

The ordinary people making medical breakthroughs via crowdsourcing – solving problems that have doctors beat

The WHO Special Programme for Research and Training in Tropical Diseases developed the guide to help boost public health by using crowdsourcing, where a group of experts and non-experts solve a problem and then share the solution with the public.


Researchers can get too close to their subject and a layman’s intuition can achieve medical breakthroughs, as World Health Organisation crowdsourcing initiatives continue to show.