Toggle light / dark theme

Giorgia Marucci of HORIBA explains how Jennifer Doudna, Emmanuelle Charpentier and their research teams revolutionized genetic engineering with their CRISPR-Cas9 discovery. Their groundbreaking approach to DNA editing elevated these two scientists to Nobel Laureate status when they received the Nobel Prize in Chemistry in 2020.

Read more about this story at: https://www.horiba.com/int/scientific

Discover other Nobel Laureate stories at: https://www.horiba.com/int/scientific

See more of HORIBA’s YouTube channel: / @horibascientific

An international team led by researchers at the University of Toronto has found a new RNA virus that they believe is hitching a ride with a common human parasite.

The virus, called Apocryptovirus odysseus, along with 18 others that are closely related to it, was discovered through a computational screen of human neuron data — an effort aimed at elucidating the connection between RNA viruses and neuroinflammatory disease. The virus is associated with severe inflammation in humans infected with the parasite Toxoplasma gondii, leading the team to hypothesize that it exacerbates toxoplasmosis disease.

“We discovered A. odysseus in human neurons using the open-science Serratus platform to search through more than 150,000 RNA viruses” said Purav Gupta, first author on the study, recent high school graduate and current undergraduate student at U of T’s Donnelly Centre for Cellular and Biomolecular Research. “Serratus identifies RNA viruses from public data by flagging an enzyme called RNA-dependent RNA polymerase, which facilitates replication of viral RNA. This enzyme allows the virus to reproduce itself and for the infection to spread.”

But while medical research facilities are subject to privacy laws, private companies — that are amassing large caches of brain data — are not. Based on a study by The Neurorights Foundation, two-thirds of them are already sharing or selling the data with third parties. The vast majority of them also don’t disclose where the data is stored, how long they keep it, who has access to it, and what happens if there’s a security breach…

This is why Pauzauskie, Medical Director of The Neurorights Foundation, led the passage of a first-in-the-nation law in Colorado. It includes biological or brain data in the State Privacy Act, similar to fingerprints if the data is being used to identify people.

“This is a first step, but we still have a long way to go,” he says.

What You Should Know:

– A glimmer of hope emerged today for rectal cancer patients as a collaborative effort between Case Western Reserve University (CWRU), Cleveland Clinic, and University Hospitals (UH) received a $2.78 million grant over five years from the National Institutes of Health and National Cancer Institute. This grant will fuel research leveraging artificial intelligence (AI) to personalize treatment for rectal cancer patients.

– The new research effort signifies a significant step forward in the fight against rectal cancer. By harnessing the power of AI, researchers are on the path to developing more precise treatment strategies, ultimately improving patient outcomes and quality of life.

Researchers from MIT and the University of Texas have developed a prototype for a handheld, chip-based 3D printer using a photonic chip that emits beams of light to cure resin into solid objects. This innovative technology could revolutionize the production of customized, low-cost objects on-the-go and has potential applications in medical and engineering fields.

Portable 3D Printing Technology

Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation.

Summary: Researchers made a significant discovery in the study of human brain evolution, identifying epiregulin as a key factor in the expansion of the human neocortex. By comparing brain development between mice and humans and utilizing 3D brain organoids, the team found that epiregulin promotes the division and expansion of stem cells, crucial for neocortex development.

This study, which utilized cutting-edge 3D culture technology, suggests that the quantity of epiregulin, rather than its presence or absence, distinguishes human brain development from that of other species, including primates like gorillas. The research offers new insights into what makes the human brain unique and underscores the value of innovative methodologies in understanding complex evolutionary processes.

Gold nanoparticles have been the subject of intense research for several decades due to their interesting applications in fields such as catalysis and medicine. “Surface ligands” are organic molecules typically present on the surface of gold nanoparticles. During synthesis, these surface ligands play an important role in controlling the size and shape of the nanoparticles.

For several decades, the CIC biomaGUNE team led by Ikerbasque Research Professor Luis Liz-Marzán has studied in detail the growth mechanisms and properties of these nanoparticles. Despite numerous advances that have recognized the importance of surface ligands, many questions remain about their exact behavior during and after growth. Direct observation of surface ligands and their interface with gold nanoparticles has therefore been a long-standing goal for many scientists in this field.

Transmission Electron Microscopy (TEM) is the technique most widely used to investigate nanoparticles. However, the study of surface ligands by means of TEM presents significant challenges; the reason is that the ligands are sensitive to the electron beam, their contrast is limited and their structure in vacuum differs from their native state in solution.

In pre-clinical trials, a small molecule effectively regrew neurons, reduced inflammation, and improved memory, speed, coordination, grip strength, and more. The finding could have a profound impact on aging and the diseases that accompany it.

In conducting the research, scientists at the University of Texas MD Anderson Cancer Center, turned their focus to telomerase reverse transcriptase (TERT), an enzyme that is known to help synthesize and extend telomeres, the protective caps at the ends of chromosomes that help cells divide. TERT levels are reduced as we age.

Without sufficient levels of TERT, when our telomeres shrink or get seriously modified, they can lead to a process that continually damages our DNA, which causes cells to release inflammatory compounds that can in turn lead to aging, tissue damage, and cancer.