Toggle light / dark theme

Researchers use 3D printer to print glass

For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths. The ability to 3D print this glass could make it possible to manufacture complex glass components and optical fibers for new types of low-cost sensors, telecommunications components and biomedical devices.

In The Optical Society (OSA) journal Optical Materials Express, researchers from the Centre d’Optique, Photonique et Laser (COPL) at Université Laval in Canada, Patrick Larochelle and his colleagues, describe how they modified a commercially available 3D printer for glass extrusion. The new method is based on the commonly used technique of fused deposition modeling, in which a plastic filament is melted and then extruded layer-by-layer to create detailed 3D objects.

“3D printing of optical materials will pave the way for a new era of designing and combining materials to produce the photonic components and fibers of the future,” said Yannick Ledemi, a member of the research team. “This new method could potentially result in a breakthrough for efficient manufacturing of infrared optical components at a low cost.”

Read more

The Kaufmann Protocol: Why we age and how to stop it

Join us at 7pm tonight! watch the livestream from our YouTube channel at 7pm.


Dr. Sandra Kaufmann

The Author of the book, The Kaufmann Protocol: Why we age and how to stop it.

The Kaufmann Protocol is the first comprehensive approach to aging that tackles why we age and then recommends a strategic, scientific formulation to decelerate the process.

The book brings practical information to everyday people and takes the science of aging out of the laboratory and into the real world.

Surgeons Just Sent a Tiny, Autonomous Bot Into a Heart Valve

In a world first, surgeons just used a self-navigating surgery robot in an experimental surgery — training a robotic catheter to find its way to a leaky valve in a pig’s heart.

The new robot, described in research published in the journal Science Robotics on Wednesday, marks the beginning of the transition from robotic surgical tools to true robot-assisted surgeries, where autonomous devices can actually take the load off of overburdened human doctors.

Read more

A breakthrough in the study of laser/plasma interactions

A new 3D particle-in-cell (PIC) simulation tool developed by researchers from Lawrence Berkeley National Laboratory and CEA Saclay is enabling cutting-edge simulations of laser/plasma coupling mechanisms that were previously out of reach of standard PIC codes used in plasma research. More detailed understanding of these mechanisms is critical to the development of ultra-compact particle accelerators and light sources that could solve long-standing challenges in medicine, industry, and fundamental science more efficiently and cost effectively.

In laser-plasma experiments such as those at the Berkeley Lab Laser Accelerator (BELLA) Center and at CEA Saclay—an international research facility in France that is part of the French Atomic Energy Commission—very large electric fields within plasmas that accelerate particle beams to over much shorter distances when compared to existing accelerator technologies. The long-term goal of these laser-plasma accelerators (LPAs) is to one day build colliders for high-energy research, but many spin offs are being developed already. For instance, LPAs can quickly deposit large amounts of energy into solid materials, creating dense plasmas and subjecting this matter to extreme temperatures and pressure. They also hold the potential for driving free-electron lasers that generate light pulses lasting just attoseconds. Such extremely short pulses could enable researchers to observe the interactions of molecules, atoms, and even subatomic particles on extremely short timescales.

Supercomputer simulations have become increasingly critical to this research, and Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) has become an important resource in this effort. By giving researchers access to physical observables such as particle orbits and radiated fields that are hard to get in experiments at extremely small time and length scales, PIC simulations have played a major role in understanding, modeling, and guiding high-intensity physics experiments. But a lack of PIC codes that have enough computational accuracy to model laser-matter interaction at ultra-high intensities has hindered the development of novel particle and light sources produced by this interaction.

Read more

Long live Nemo! New animal model in aging research?

The colorful Clownfish lives longer than 20 years in the aquarium. Researchers of the Scuola Normale Superiore in Pisa, Italy, in collaboration with the Leibniz Institute on Aging (FLI) in Jena, Germany, have investigated the genetics behind the longevity of clownfish. By sequencing the genome and comparing the sequences with other species, they were able to show, that the secret of this longevity lies in the mitochondria and lysosomes of the clownfish. Because it is uncomplicated to keep and breed clownfish, they represent an interesting new animal model for research on longevity. The results are now published in the journal BMC Evolutionary Biology.

Clownfish, famous because of the Disney movie “Finding Nemo,” are a bright orange-white-black colored fish with three vertical stripes, which occur in the western Pacific and Indian Oceans. Clownfish live in symbiotic relationship with sea anemone. They are reliant on sea anemone for shelter in their natural habitat, which offer protection for the fish with its tentacles. The Clownfish’s mucus protection prevents it from being stung by the tentacles of the sea anemone. Thanks to this survival strategy, have a lower mortality rate than other fishes and can grow quite old. Until now there was not much known about the lifespan of this interesting sea dweller.

Read more

One Step Closer to Artifical Lymph Nodes

Scientists from Johns Hopkins Medicine have reported the successful creation of a special type of gel that mimics the lymph nodes in our bodies. This gel recruits and multiplies T cells just like actual lymph nodes do, so it could help in the fight against cancer and immune system disorders.

The lymph nodes are the boot camps of the immune system

There has been a great deal of interest in immunotherapy in the last few years, particuarly in using the T cells, a type of white blood cell, to hunt down cancer and destroy it. Our own immune system is quite literally living medicine, and when it works properly, it can deal with invading pathogens and cancers with ease; this is one reason why the traditional small-molecule approach to cancer has started to fall by the wayside in favor of immune approaches.

Read more