Scientific collaborators from Carnegie Mellon University and University of Minnesota have created a way for people to control a robotic arm using a non-invasive brain-computer interface (BCI). Previously, electrode array implants in the brain have been necessary to give severely disabled people the ability to manipulate an external robot. That is because implants can gather more actionable signal information by being placed right on the surface of the brain. Avoiding dangerously invasive brain surgery to place these implants, though, is a big goal in the field of brain-computer interfaces.
The Carnegie Mellon team turned to newly developed sensing and machine learning methods to accurately read signals coming from deep within the brain, relying only on an external electroencephalography cap for signal gathering. The system can quickly improve both its performance and that of the person using it, to achieve drastically better results than previous solutions. Volunteers using the technology were put through a pursuit task and a training regimen to improve their engagement, while the system was performing an analysis of their brain signals.
Here’s a video showing how the system allows for accurate, and very smooth tracking of a cursor on a screen by a robotic arm that’s mind-controlled by a human:
Although the exact causes of multiple sclerosis still remain unknown, it is assumed that the disease is triggered by a combination of genetic and environmental risk factors. But which? In a mouse model of the disease, researchers at the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG), Switzerland, studied the potential link between transient cerebral viral infections in early childhood and the development of this cerebral autoimmune disease later in life. Indeed, the brain area affected by viral infection during childhood undergoes a change that can call, a long time later, on the immune system to turn against itself at this precise location, triggering autoimmune lesions. These results, which are published in the journal Science Translational Medicine, provide a first step in answering one of the possible environmental causes of this serious disease.
Multiple sclerosis affects one in 1,000 people in Switzerland, two-thirds of whom are women. It is the most common auto-immune disease affecting the brain. Up to date, there is still neither a cure available, nor a clear understanding of the factors that trigger this disease at around 30 years of age. “We asked ourselves whether brain viral infections that could be contracted in early childhood were among the possible causes,” says Doron Merkler, a professor in the Department of Pathology and Immunology in UNIGE’s Faculty of Medicine and senior consultant in the Clinical Pathology Service of the HUG. Such transient brain infections can be controlled quickly by the immune system, without the affected individual even noticing any symptoms. “But these transient infections may, under certain circumstances, leave a local footprint, an inflammatory signature, in the brain,” continues the researcher.
A 3D-printed prosthetic hand controlled using a new AI-based approach could significantly lower the cost of bionic limbs for amputees.
Real need: There are approximately 540,000 upper-limb amputees in the United States, but sophisticated “myoelectric” prosthetics, controlled by muscle contractions, are still very expensive. Such devices cost between $25,000 and $75,000 (not including maintenance and repair), and they can be difficult to use because it is hard for software to distinguish between different muscle flexes.
Handy invention: Researchers in Japan came up with a cheaper, smarter myoelectric device. Their five-fingered, 3D-printed hand is controlled using a neural network trained to recognize combined signals—or, as they call them, “muscle synergies.” Details of the bionic hand are published today in the journal Science Robotics.
Scientists from Sanford Burnham Prebys have created natural-looking hair that grows through the skin using human induced pluripotent stem cells (iPSCs), a major scientific achievement that could revolutionize the hair growth industry. The findings were presented today at the annual meeting of the International Society for Stem Cell Research (ISSCR) and received a Merit Award. A newly formed company, Stemson Therapeutics, has licensed the technology.
More than 80 million men, women and children in the United States experience hair loss. Genetics, aging, childbirth, cancer treatment, burn injuries and medical disorders such as alopecia can cause the condition. Hair loss is often associated with emotional distress that can reduce quality of life and lead to anxiety and depression.
“Our new protocol described today overcomes key technological challenges that kept our discovery from real-world use,” says Alexey Terskikh, Ph.D., an associate professor in Sanford Burnham Prebys’ Development, Aging and Regeneration Program and the co-founder and chief scientific officer of Stemson Therapeutics. “Now we have a robust, highly controlled method for generating natural-looking hair that grows through the skin using an unlimited source of human iPSC-derived dermal papilla cells. This is a critical breakthrough in the development of cell-based hair-loss therapies and the regenerative medicine field.”
DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its function. Genomic methylation patterns in somatic differentiated cells are generally stable and heritable. However, in mammals there are at least two developmental periods—in germ cells and in preimplantation embryos—in which methylation patterns are reprogrammed genome wide, generating cells with a broad developmental potential. Epigenetic reprogramming in germ cells is critical for imprinting; reprogramming in early embryos also affects imprinting. Reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals, and in the erasure of acquired epigenetic information. A role of reprogramming in stem cell differentiation is also envisaged.
DNA methylation is one of the best-studied epigenetic modifications of DNA in all unicellular and multicellular organisms. In mammals and other vertebrates, methylation occurs predominantly at the symmetrical dinucleotide CpG (1–4). Symmetrical methylation and the discovery of a DNA methyltransferase that prefers a hemimethylated substrate, Dnmt1 , suggested a mechanism by which specific patterns of methylation in the genome could be maintained. Patterns imposed on the genome at defined developmental time points in precursor cells could be maintained by Dnmt1, and would lead to predetermined programs of gene expression during development in descendants of the precursor cells (5, 6). This provided a means to explain how patterns of differentiation could be maintained by populations of cells. In addition, specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed.
Neat and convincing as this model is, it is still largely unsubstantiated. While effects of methylation on expression of specific genes, particularly imprinted ones and some retrotransposons , have been demonstrated in vivo, it is still unclear whether or not methylation is involved in the control of gene expression during normal development (9–13). Although enzymes have been identified that can methylate DNA de novo (Dnmt3a and Dnmt3b) (14), it is unknown how specific patterns of methylation are established in the genome. Mechanisms for active demethylation have been suggested, but no enzymes have been identified that carry out this function in vivo (15–17). Genomewide alterations in methylation—brought about, for example, by knockouts of the methylase genes—result in embryo lethality or developmental defects, but the basis for abnormal development still remains to be discovered (7, 14).
An all-star panel of experts in nutritional studies with an emphasis on longevity. At some point in your life, you have heard the following. “Eat the right food. It will help you live longer.” What if I told you the right food could help you heal as well. This panel of longevity driven nutritionist will give you a broad range of fact-based regiments and compelling individual opinions on Nutrition and longevity. This segment will cover many diverse understandable methods that can make a change in longevity for you or your loved ones. Fill yourself with the knowledge of proper nutrition for longevity.
Speakers Will Include: Brian Clement – Plant-Based & founder of “Hippocrates Health Institute” A typical American growing up in the New Jersey/New York area, Brian likes to joke that he was a pioneer in the field of obesity—he was fat even before many Americans were fat! Raised in an Irish household on the standard American diet of meat, processed foods, and sugary sodas, he was unfit and gasping for air every few steps. When he was 20 years old, he was dating a girl whose best friend’s boyfriend was 30—and a vegetarian. Despite the fact he had been more or less educated by his family that the body would die without animal-based foods, the lure of an influential peer inspired him to give up meat in one fell swoop. For the first year and a half, he kept his vegetarian diet a secret from his family. Yet after losing 120 pounds and experiencing the difference in his health, he came out of the proverbial closet (much to his family’s dismay!) and became a complete vegan three years later.
Wendi Blum – Founder of “Founder of Create Your Best Life” Wendi Blum worked in the pharmaceutical industry for over 20 years until (at age 45) felt a calling to completely change every aspect of her life. After two decades in a successful sales career (having worked for Zenecca Pharmaceuticals, PDI and Bristol Myers Squibb, wearing many different hats including advocacy, sales, and training) Wendi decided to re-write the story of her life literally and become an international inspirational speaker, author, workshop leader, success coach, and life-shift retreat guru. She is the author of 5 books – known for her focus on reinvention, goal mastery, and business savvy – she is known as “the queen of reinvention” Her titles include: “Your Life, Your Destiny, Uncover Yours, LifeShift” and “Goals Setting Workbook: Success Strategies for The New Economy” – and many more. Blum is known for her blend of Spiritual flare with business savvy” because of how she merges these two powerful components together.
Bill Faloon — Director and Co-founder of the “Life Extension Foundation”.
Bill Faloon compiled the 1,500-page medical reference book Disease Prevention and Treatment, and his latest book is Pharmocracy: How Corrupt Deals and Misguided Medical Regulations Are Bankrupting America—and What to Do About It. He is also director and co-founder of the Life Extension Foundation, a consumer advocacy organization that funds research and disseminates information to consumers about optimal health. Mr. Faloon has made hundreds of media appearances, including guest spots on The Phil Donohue Show, Tony Brown’s Journal, and ABC News Day One, and has been interviewed Newsweek and other magazines.
When ozone and skin oils meet, the resulting reaction may help remove ozone from an indoor environment, but it can also produce a personal cloud of pollutants that affects indoor air quality, according to a team of researchers.
In a computer model of indoor environments, the researchers show that a range of volatile and semi-volatile gases and substances are produced when ozone, a form of oxygen that can be toxic, reacts with skin oils carried by soiled clothes, a reaction that some researchers have likened to the less-than-tidy Peanuts comic strip character.
“When the ozone is depleted through human skin, we become the generator of the primary products, which can cause sensory irritations,” said Donghyun Rim, assistant professor of architectural engineering and an Institute for CyberScience associate, Penn State. “Some people call this higher concentration of pollutants around the human body the personal cloud, or we call it the ”Pig-Pen Effect.””.
Inserting air into hot glass to form a bubble has been used to make glass objects since Roman times. In new work, researchers apply these same glass blowing principles on a microscopic scale to make specialized miniature cone-shaped lenses known as axicons.
Axicons are used to shape laser light in a way that is beneficial for optical drilling, imaging and creating optical traps for manipulating particles or cells. These lenses have been known for more than 60 years, but their fabrication, especially when small, is not easy.
“Our technique has the potential of producing robust miniature axicons in glass at a low cost, which could be used in miniaturized imaging systems for biomedical imaging applications, such as optical coherence tomography, or OCT,” said research team member Nicolas Passilly from FEMTO-ST Institute in France.
In the past 10 days, officials have recorded nearly 100 new cases of Ebola in the ongoing outbreak in the Democratic Republic of the Congo (DRC), a sign of fluctuating transmission throughout North Kivu and Ituri provinces, the World Health Organization (WHO) said in an update.
Today, the DRC will likely confirm another 18 new cases, which will raise the outbreak total to 2,265. As of yesterday, there were 1,510 deaths, and 269 suspected cases are still being investigated.