Toggle light / dark theme

The ability to confine water in an enclosed compartment without directly manipulating it or using rigid containers is an attractive possibility. In a recent study, Sara Coppola and an interdisciplinary research team in the departments of Biomaterials, Intelligent systems, Industrial Production Engineering and Advanced Biomaterials for Healthcare in Italy, proposed a water-based, bottom-up approach to encase facile, short-lived water silhouettes in a custom-made adaptive suit.

In the work, they used a biocompatible that could self-assemble with unprecedented degrees of freedom on the surface to produce a . They custom designed the polymer film as an external container of a liquid core or as a free-standing layer. The scientists characterized the physical properties and morphology of the and proposed a variety of applications for the phenomenon from the nanoscale to the macroscale. The process could encapsulate cells or microorganisms successfully without harm, opening the way to a breakthrough approach applicable for organ-on-a-chip and lab-in-a-drop experiments. The results are now published in Science Advances.

The possibility of isolating, engineering and shaping materials into 2-D or 3D objects from the nanometer to the microscale via bottom-up engineering is gaining importance in materials science. Understanding the physics and chemistry of materials will allow a variety of applications in microelectronics, drug delivery, forensics, archeology and paleontology and space research. Materials scientists use a variety of technical methods for microfabrication including two-photon polymerization, soft interference lithography, replica molding and self-folding polymers to shape and isolate the material of interest. However, most materials engineering protocols require chemical and physical pretreatments to gain the desired final properties.

Read more

A terminally ill patient who opted for assisted death has undergone cryonic preservation at the Alcor Life Extension Foundation. This preservation—the first of its kind—signifies an important milestone for cryonics advocates, who argue that the right to death, paradoxically, is a potential pathway to an eternal life.

On October 30, 2018, Alcor performed its 164th cryopreservation. It was an otherwise unremarkable moment for the nonprofit organization, save for the way Norman Hardy of Mountain View, California met his demise. Hardy was diagnosed with terminal metastatic prostate cancer, and it had spread to his bones and lungs. As noted in Alcor’s case summary, his “pain had been poorly managed,” so he opted for assisted death, which was legalized in California in 2016 through the End of Life Options Act (EOLOA).

Read more

Circa 2015


ETH researchers have found an error-free way to store information in the form of DNA, potentially preserving it for millions of years: encapsulate the information-bearing segments of DNA in silica (glass), using an error-correcting information-encoding scheme.

Scrolls thousands of years old provide us with a glimpse into long-forgotten cultures and the knowledge of our ancestors. In this digital era, in contrast, a large part of our knowledge is located on servers and hard drives, which may not survive 50 years, let alone thousands of years. So researchers are searching for new ways to store large volumes of data over the long term.

Recently, 300,000 year old mitochondrial DNA from bears and humans has been sequenced. DNA has also been utilized as a coding language, for applications in forensics, product tagging, and DNA computing, the researchers note.

Read more

Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicine and collaborators at other institutions.

Research published in the April print edition of the journal Life Science Alliance, shows that called FIASMAs, including desipramine, amitriptyline, and nortriptyline, halt the growth or kill four different intracellular bacterial pathogens in tissue cell culture and animal models.

“Antibiotic options for diseases caused by intracellular bacteria are limited because many of these drugs cannot penetrate our cell membranes. In essence, the bacteria are protected,” said Jason Carlyon, Ph.D., leader of the study and professor in the VCU Department of Microbiology and Immunology.

Read more

The cells of most patients’ cancers are resistant to a class of drugs, called proteasome inhibitors, that should kill them. When studied in the lab, these drugs are highly effective, yet hundreds of clinical trials testing proteasome inhibitors have failed. Now scientists may have solved the mystery of these cells’ surprising hardiness. The key: Resistant cancer cells have shifted how and where they generate their energy. Using this new insight, researchers have identified a drug that resensitizes cancer cells to proteasome inhibitors and pinpointed a gene that is crucial for that susceptibility.

As develop, they accrue multiple genetic alterations that allow the cells to quickly reproduce, spread and survive in distant parts of the body, and recruit surrounding cells and tissues to support the growing tumor. To perform these functions, cancer cells must produce high volumes of the proteins that support these processes. The increased production and numerous mutated proteins of cancer cells make them particularly dependent on the proteasome, which is the cell’s protein degradation machine. These huge protein complexes act as recycling machines, gobbling up unwanted proteins and dicing them into their amino acid building blocks, which can be reused for the production of other proteins.

Previously, researchers exploited cancer cells’ increased dependency on their proteasomes to develop anti-cancer therapies that inhibit the proteasomes’ function. Several distinct proteasome inhibitors have been developed, and when used in the lab, these proteasome inhibitor drugs are indeed highly effective at eradicating tumor cells. However, when administered to animal models or patients with cancer, such as multiple myeloma, proteasome inhibitors have limited efficacy and even initially vulnerable cancer cells quickly develop resistance to them. How do cancer cells so adroitly sidestep drugs that should kill them?

Read more

Photo by Erin Ashford Yale University Principal Investigator: David Spiegel Research Team: Prof. Jason Crawford, Nam Kim, Venkata Sabbasani, Matthew Streeter The long-lived collagen proteins that give structure to our arteries and other tissues are continuously exposed to blood sugar and other highly reactive molecules necessary for life. Occasionally, …Glucosepane Crosslinks and Undoing Age-Related Tissue Damage.

Read more

Unregulated cell division is a hallmark of cancer, and one of the key proteins involved in controlling cell division is called FoxM1. Abnormal activation of FoxM1 is a common feature of cancer cells and is correlated with poor prognosis, metastasis, and resistance to chemotherapy.

Now researchers at UC Santa Cruz have determined the structure of this protein—a kind of “master switch” for cell division—in its inactive or “off” conformation. This new understanding of the structure of FoxM1 could ultimately be used to design new drugs that stabilize the protein in its inactive state and thereby stop the uncontrolled proliferation of cancer cells.

Seth Rubin, professor of chemistry and biochemistry at UC Santa Cruz, explained that FoxM1 is a “transcription factor,” a protein that controls the activity of specific genes.

Read more

If you’re planning a trip to Hawaii, be mindful of what you eat, the state’s Department of Health states in an advisory published last week. Officials are ramping up efforts to warn tourists about rat lungworm disease, an illness caused by a parasite that can infest human brains. The advisory follows an alert from the CDC that confirmed three new rat lungworm cases all linked to Hawaii.

Read more