Click on photo to start video.
This pillow claims to reduce acid reflux symptoms — I decided to try it.
I wonder how diet mixed with CBD oil treatment can work on neurodegenerative diseases? A man has told of how he “got his mum back” after a diagnosis of Alzheimer’s disease, in part, by getting her to follow a diet high in berries and leafy green vegetables.
One man has ‘got his mum back’ from the ravages of Alzheimer’s, partly…
#ClinicalTrial The most common syndrome in patients with severe dementia is agitated behavior, which is often characterized by a combination of violent behavior (physical or verbal), restlessness, and inappropriate loudness. The treatment options for this syndrome are limited and lead to severe side effects. In vivo experiments on animals and clinical studies on adults show that cannabinoids could have a beneficial effect on behavioral disorders in general, and in dementia-related disorders in particular.
Full Text View.
Neurological therapeutics have been hampered by its inability to advance beyond symptomatic treatment of neurodegenerative disorders into the realm of actual palliation, arrest or reversal of the attendant pathological processes. While cannabis-based medicines have demonstrated safety, efficacy and consistency sufficient for regulatory approval in spasticity in multiple sclerosis (MS), and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges remain. This review will examine the intriguing promise that recent discoveries regarding cannabis-based medicines offer to neurological therapeutics by incorporating the neutral phytocannabinoids tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), and cannabis terpenoids in the putative treatment of five syndromes, currently labeled recalcitrant to therapeutic success, and wherein improved pharmacological intervention is required: intractable epilepsy, brain tumors, Parkinson disease (PD), Alzheimer disease (AD) and traumatic brain injury (TBI)/chronic traumatic encephalopathy (CTE). Current basic science and clinical investigations support the safety and efficacy of such interventions in treatment of these currently intractable conditions, that in some cases share pathological processes, and the plausibility of interventions that harness endocannabinoid mechanisms, whether mediated via direct activity on CB1 and CB2 (tetrahydrocannabinol, THC, caryophyllene), peroxisome proliferator-activated receptor-gamma (PPARγ; THCA), 5-HT1A (CBD, CBDA) or even nutritional approaches utilizing prebiotics and probiotics. The inherent polypharmaceutical properties of cannabis botanicals offer distinct advantages over the current single-target pharmaceutical model and portend to revolutionize neurological treatment into a new reality of effective interventional and even preventative treatment.
Keywords: cannabis, pain, brain tumor, epilepsy, Alzheimer disease, Parkinson disease, traumatic brain injury, microbiome.
Cannabis burst across the Western medicine horizon after its introduction by William O’Shaughnessy in 1838 (O’Shaughnessy, 1838–1840; Russo, 2017b), who described remarkable successes in treating epilepsy, rheumatic pains, and even universally fatal tetanus with the “new” drug. Cannabis, or “Indian hemp,” was rapidly adopted by European physicians noting benefits on migraine by Clendinning in England (Clendinning, 1843; Russo, 2001) and neuropathic pain, including trigeminal neuralgia by Donovan in Ireland (Donovan, 1845; Russo, 2017b). These developments did not escape notice of the giants of neurology on both sides of the Atlantic, who similarly adopted its use in these indications: Silas Weir Mitchell, Seguin, Gowers and Osler (Mitchell, 1874; Seguin, 1877; Gowers, 1888; Osler and McCrae, 1915).
Imperial researchers have developed a new bioinspired material that interacts with surrounding tissues to promote healing.
Materials are widely used to help heal wounds: Collagen sponges help treat burns and pressure sores, and scaffold-like implants are used to repair broken bones. However, the process of tissue repair changes over time, so scientists are looking to biomaterials that interact with tissues as healing takes place.
Creatures from sea sponges to humans use cell movement to activate healing. Our approach mimics this by using the different cell varieties in wounds to drive healing. Dr Ben Almquist Department of Bioengineering
Since my previous post about Youtube and anti-vaccination was such a hit, here’s now Pinterest handles it. They broke their own search engine to keep these things from getting passed around. They also blocked the ability to pin links or images from any number of pseudoscience websites such as Mercola, Natural News, GreedMedInfo, and HealthNutNews.
They also did this to their hash-tag library to keep people from finding workarounds.
O n Wednesday morning, Adam Schiff, the powerful chair of the House intelligence committee, joined journalists around the world in a nascent Twitter meme: he searched “vaccine” on Facebook and posted a screenshot of the results.
Schiff’s search results were indeed alarming: autofill suggestions for phrases such as “vaccination re-education discussion forum”, a group called “Parents Against Vaccination”, and the page for the National Vaccine Information Center, an official-sounding organization that promotes anti-vaccine propaganda. And while search results on Facebook are personalized to each user, a recent Guardian report found similarly biased results for a brand new account.
That’s why Ellington sees a more immediate use for the technology in the up-and-coming field of DNA data storage. Large tech firms and startups alike are evaluating whether nucleotides can beat out silicon when it comes to long-term, archival information storage. DNA is notoriously data-dense, and the arrival of hachimoji just doubled its information-carrying capacity.
But first, chemists hope to improve DNA data storage and churn out new medical compounds.