Toggle light / dark theme

Here are the stories — in their own words — of five women of synthetic biology

Numbers don’t lie, they say. And the numbers show that, as with other life sciences and biotech fields, the number of women in leadership positions in the synthetic biology space is disappointingly low. Last year, I reported that only 14% of the 236 synthetic biology companies I surveyed were led by women. I think most people would agree this is a serious issue — and that something needs to be done about it. But all too often, well-meaning, proactive efforts fizzle out before they have a chance to make a real impact. Why?

I think one of the biggest problems lies in what the numbers can’t show us. The numbers can’t help us understand what it is like, day in and day out, to be a woman in a space where your authority, expertise, and qualifications are constantly questioned. The numbers can’t help us feel the sadness, anger, and frustration facing many women in synthetic biology. The numbers don’t adequately describe what it is really like to be a woman in synthetic biology, so for those that aren’t a woman in synthetic biology, the problem is easily forgotten, or assumed to be taken care of by, who else, the women in synthetic biology.

To put some emotion and empathy behind the numbers — rather than distance and apathy — I recently reached out to several leading women in the synthetic biology space for their stories. In their own, non-sugar coated words, here’s what’s it’s really like to be a woman in synthetic biology. I hope you are as inspired by their stories as I am.

Stretchable supercapacitors to power tomorrow’s wearable devices

Researchers at Duke University and Michigan State University have engineered a novel type of supercapacitor that remains fully functional even when stretched to eight times its original size. It does not exhibit any wear and tear from being stretched repeatedly and loses only a few percentage points of energy performance after 10,000 cycles of charging and discharging.

The researchers envision the being part of a power-independent, stretchable, flexible electronic system for applications such as wearable electronics or .

The results appear online March 19 in Matter, a journal from Cell Press. The research team includes senior author Changyong Cao, assistant professor of packaging, and electrical and computer engineering at Michigan State University (MSU), and senior author Jeff Glass, professor of electrical and computer engineering at Duke. Their co-authors are doctoral students Yihao Zhou and Qiwei Han and research scientist Charles Parker from Duke, as well as Ph.D. student Yunteng Cao from the Massachusetts Institutes of Technology.

A Surprising Breakthrough Will Allow Tiny Implants to Fix – and Even Upgrade – Your Body

Known as an ion-gated transistor (IGT), the new class of technology effectively melds electronics with molecules of human skin.


But wait, you no longer need any of those, since you recently got one of the new biomed implants — a device that integrates seamlessly with body tissues, because of a watershed breakthrough that happened in the early 2020s. It’s an improved biological transistor driven by electrically charged particles that move in and out of your own cells. Like insulin pumps and cardiac pacemakers, the medical implants of the future will go where they are needed, on or inside the body.

Scientists at @Columbia built a new ion-driven transistor that can safely interact with human skin. What does this mean for the future of #medical #bioelectronics? Find out via @PhysicsWorld: https://bddy.me/2YsvJ0g #wearabletech #healthIT pic.twitter.com/qj3LX3Dqfx

— Lam Research (@LamResearch) March 26, 2019

Swiss hospitals face collapse in 10 days if virus keeps spreading

ZURICH (Reuters) — Switzerland’s health care system could collapse by the end of the month if the new coronavirus keeps spreading at current rates, a government official warned on Tuesday.

Swiss authorities estimated that 2,650 people had tested positive for the coronavirus and said 19 people had died, while predicting cases will likely soar in the weeks ahead.

Exact figures were unavailable. Daniel Koch, head of the Federal Office of Health’s communicable diseases division, said the rapid rise had outstripped the state’s ability to record new cases in real time.

COVID-19 coronavirus epidemic has a natural origin

I know some have speculated that the Coronavirus was engineered:

An analysis of public genome sequence data from SARS-CoV-2 and related viruses found no evidence that the virus was made in a laboratory or otherwise engineered.


The novel SARS-CoV-2 coronavirus that emerged in the city of Wuhan, China, last year and has since caused a large scale COVID-19 epidemic and spread to more than 70 other countries is the product of natural evolution, according to findings published today in the journal Nature Medicine.

The analysis of public genome sequence data from SARS-CoV-2 and related viruses found no evidence that the virus was made in a laboratory or otherwise engineered.

“By comparing the available genome sequence data for known coronavirus strains, we can firmly determine that SARS-CoV-2 originated through natural processes,” said Kristian Andersen, PhD, an associate professor of immunology and microbiology at Scripps Research and corresponding author on the paper.

Antibiotics weaken flu defenses in the lung

Hmm… are people with reduced lung capacity after recovering from the coronavirus more susceptible to getting the flu? Or does taking antibiotics increase one’s risk getting the coronavirus since it attacks the respiratory system?


Antibiotics can leave the lung vulnerable to flu viruses, leading to significantly worse infections and symptoms, finds a new study in mice led by the Francis Crick Institute.

The research, published in Cell Reports, discovered that signals from gut bacteria help to maintain a first line of defence in the lining of the lung. When mice with healthy gut bacteria were infected with the flu, around 80% of them survived. However, only a third survived if they were given antibiotics before being infected.

“We found that antibiotics can wipe out early flu resistance, adding further evidence that they should not be taken or prescribed lightly,” explains Dr Andreas Wack, who led the research at the Francis Crick Institute. “Inappropriate use not only promotes antibiotic resistance and kills helpful gut bacteria, but may also leave us more vulnerable to viruses. This could be relevant not only in humans but also livestock animals, as many farms around the world use antibiotics prophylactically. Further research in these environments is urgently needed to see whether this makes them more susceptible to viral infections.”

Making Sense with Sam Harris #191 — Early Thoughts On a Pandemic (with Amesh Adalja)

Sam Harris discusses the coronavirus withAmesh Adalja.


In this episode of the podcast, Sam Harris speaks with Amesh Adalja about the spreading coronavirus pandemic. They discuss the contagiousness of the virus and the severity of the resultant illness, the mortality rate and risk factors, vectors of transmission, how long coronavirus can live on surfaces, the importance of social distancing, possible anti-viral treatments, the timeline for a vaccine, the importance of pandemic preparedness, and other topics.

Amesh Adalja, MD, is an infectious disease specialist at the Johns Hopkins University Center for Health Security. His work is focused on emerging infectious disease, pandemic preparedness, and biosecurity. Amesh has served on US government panels tasked with developing guidelines for the treatment of plague, botulism, and anthrax. He is an Associate Editor of the journal Health Security, co-editor of the volume Global Catastrophic Biological Risks, and a contributing author for the Handbook of Bioterrorism and Disaster Medicine. Amesh actively practices infectious disease, critical care, and emergency medicine in the Pittsburgh metropolitan area.

Website: www.trackingzebra.com

Twitter: @AmeshAA

/* */