Toggle light / dark theme

Cilantro, also known as coriander, has been traditionally used as a folk medicine for thousands of years, with one of those uses being as an anticonvulsant to prevent the onset of epileptic seizures. New research from University of California, Irvine, has now for the first time homed in on the specific molecular action that explains how this herb can reduce seizures.

Recently, we had the opportunity to interview Professor George Church, a well-known geneticist and rejuvenation expert whom we have previously interviewed. Prof. Church’s company, Rejuvenate Bio, will be launching a clinical trial to test a rejuvenation therapy in dogs this fall.

In your recent paper on enabling large-scale genome editing, you talked about manipulating endogenous transposable elements with the help of dead Cas9 base editors. At Ending Age-Related Diseases, Andrei Gudkov spoke about the super mutagenic phenotype that arises from the expression of LINE1 reverse transcriptase. In this context, he mentioned the possibility of the retrobiome (as he referred to it) being the main driver of all types of cellular damage, which is consequently improperly addressed due to immunosenescence. Do you share his views on the contribution of LINEs and SINEs in aging? If not, why?

Yes. That is one of the reasons why we explored the tech for editing of repeats. We are now extending this to the germline engineering of repeats.

For Kenneth Church, sending a 3D printer that could one day print viable human organs to the International Space Station was a personal decision.

Church’s daughter, Kendie Hope, suffered from a diaphragmatic hernia when she was little that prevented her right lung from growing.

“It turned out that my kid shouldn’t have lived,” Church, who is the CEO of nScrypt — an Orlando-based manufacturer that sells 3D printing equipment, said.

HELLO! https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025786/


With approximately 40 million adults across the United States experiencing anxiety each year, scientists and researchers have dedicated their careers to trying to better understand this condition. Despite this work, we are still somewhat unclear on what actually causes this condition to occur.

Characterized by feelings of nervousness and restlessness, increased heart rate, hyperventilation, sweating, trembling, difficulty concentrating and uncontrolled worry, it has the ability to impact every area of one’s life. There are many theories regarding the root cause of the condition, including genetics, brain chemistry, environmental factors or other medical factors and/or disease, however, nothing has been proven definitively. Instead, the scientific community continues to explore these leads further in the hope of an answer.

Today, we want to highlight a recent human trial of the popular supplement nicotinamide riboside, a compound that has been shown in mice to restore NAD+ levels. The compound has had impressive results against some aspects of aging in mouse studies, and there is now some more data for NR in humans [1].

What is nicotinamide riboside?

Nicotinamide adenine dinucleotide (NAD+) is a chemical that facilitates the production of energy from sugar and is present in every cell in our body. As well as being important in energy production, it is also involved in DNA repair, cellular signaling, and many other cell functions.

Scientists from the University of Exeter believe it may be possible to avoid developing dementia, and there are 5 ways that can help to reduce the risk, findings were presented at the Alzheimer’s Association International Conference.

As published in the journal JAMA living a healthy lifestyle may help reduce the risk of dementia even if you have a genetic risk; risk of dementia in those with a higher genetic risk who followed a healthy lifestyle were found to be at 32% lower risk than those with an unhealthy lifestyle.

Data was studied from 196,383 adults of European ancestry who were 60+ years old; 1,769 cases of dementia were identified over an 8 years follow up period; those with high genetic risk and an unhealthy lifestyle were found to be almost 3 times more likely to develop dementia.

A previously unidentified cell population in the pericardial fluid found within the sac around the heart has been identified in a collaborative study at the University of Calgary which may lead to new treatments for those with injured hearts, as published in the journal Immunity.

Discovered in the pericardial fluid of a mouse with heart injury, a Gata6+ pericardial cavity macrophage cell was found to help heal injured hearts in mice; the same cells were also found within human pericardium of those with injured hearts, confirming the repair cells offer promise of a new therapy for patients with heart disease.

“The fuel that powered this study is the funding from the Heart and Stroke Foundation of Canada, the collaboration between two major research institutes at CSM (Snyder and Libin) and the important contribution of philanthropy from the Libin and Snyder families to obtain imaging equipment available to very few programs globally,” says Dr. Paul Kubes.

This 2-part series on “Regenerative Medicine” shows how it is possible to replace lost or damaged body parts by using human cells. Surviving a disease such as cancer can leave scars, both physical and emotional. Whether it’s due to a mastectomy or radiation therapy, scars are hard to avoid. Fat-derived stem cells can help patients return close to their original state, providing peace of mind. We also look at the benefits of using oil to balance the amount of fat in a body.

Mesenchymal stem cells (MSCs), the major stem cells for cell therapy, have been used in the clinic for approximately 10 years. From animal models to clinical trials, MSCs have afforded promise in the treatment of numerous diseases, mainly tissue injury and immune disorders. In this review, we summarize the recent opinions on methods, timing and cell sources for MSC administration in clinical applications, and provide an overview of mechanisms that are significant in MSC-mediated therapies. Although MSCs for cell therapy have been shown to be safe and effective, there are still challenges that need to be tackled before their wide application in the clinic.

Keywords: mesenchymal stem cell, cell therapy, tissue injury, degenerative disease, immune disorder, graft-versus-host disease, immunomodulation, trophic factor.

Stem cells are unspecialized cells with the ability to renew themselves for long periods without significant changes in their general properties. They can differentiate into various specialized cell types under certain physiological or experimental conditions. Cell therapy is a sub-type of regenerative medicine. Cell therapy based on stem cells describes the process of introducing stem cells into tissue to treat a disease with or without the addition of gene therapy. Hematopoietic stem cells (HSCs) have been widely used for allogeneic cell therapy. The successful isolation of pluripotent embryonic stem (ES) cells from the inner cell mass of early embryos has provided a powerful tool for biological research. ES cells can give rise to almost all cell lineages and are the most promising cells for regenerative medicine.