Toggle light / dark theme

It takes an incredible amount of energy to both train and operate artificial intelligence software, as we explored last week in The Bleeding Edge – AI’s Thirst for Power.

OpenAI’s GPT-4 generative AI, which powers its ChatGPT, required about 10 megawatts (MW) of electricity to train. That’s roughly equivalent to the power requirements of 10,000 average homes.

It’s also about 833,000 times the electricity required to power the human brain.

Conversely, stimulated Raman spectroscopy represents a modern analytical method used to study molecular vibrational properties and interactions, offering valuable insights into molecular fine structure. Its applications span various domains, including , biomedical research, materials science, and environmental monitoring.

By combining these two techniques, an exceptionally powerful analytical tool for studying complex molecular materials emerges.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Zhedong Zhang and Professor Zhe-Yu Ou from Department of Physics, City University of Hong Kong, Hong Kong, China, developed a microscopic theory for the ultrafast stimulated Raman spectroscopy with quantum-light fields.

“Bridge recombination can universally modify genetic material through sequence-specific insertion, excision, inversion, and more, enabling a word processor for the living genome beyond CRISPR,” said Berkeley’s Patrick Hsu, a senior author of one of the studies and Arc Institute core investigator, in a press release.

CRISPR Coup

Scientists first discovered CRISPR in bacteria defending themselves against viruses. In nature, a Cas9 protein pairs with an RNA guide molecule to seek out viral DNA and, when located, chop it up. Researchers learned to reengineer this system to seek out any DNA sequence, including sequences found in human genomes, and break the DNA strands at those locations. The natural machinery of the cell then repairs these breaks, sometimes using a provided strand of DNA.

A neuroimaging study of young people who exhibit a persistent pattern of disruptive, aggressive, and antisocial behavior, known as conduct disorder, has revealed extensive changes in brain structure.


NIH-funded study of conduct disorder identifies new brain areas associated with the disorder, offering future directions for research efforts and clinical practice.

Our bone marrow—the fatty, jelly-like substance inside our bones—is an unseen powerhouse quietly producing 500 billion new blood cells every day. That process is driven by hematopoietic stem cells that generate all of the various types of blood cells in our bodies and regenerating themselves to keep the entire assembly line of blood production operating smoothly.

As with any complex system, hematopoietic stem cells lose functionality as they age—and, in the process, contribute to the risk of serious diseases, including blood cancers. We know that the risk of developing aging-associated diseases is different among different individuals. Surprisingly, however, little is known about whether hematopoietic stem cells age differently between individuals.

“If you take a room full of 50-year-olds, some will be completely gray-haired, others will be salt-and-pepper, and a few will not have any gray hairs at all,” said Jennifer Trowbridge, Dattels Family Endowed Chair and professor at the Jackson Laboratory. “Logically, you’d expect to see the same kind of variation in the function of hematopoietic stem cells—but until now, nobody has studied that directly.”

A University of Bristol-led study found that life on Earth, stemming from a common ancestor called LUCA, flourished soon after the planet’s formation.

Through genetic analysis and evolutionary modeling, researchers pinpointed LUCA’s existence to about 4.2 billion years ago, revealing it as a complex organism with an early immune system integral to Earth’s earliest ecosystems.

Luca’s genetic blueprint and its descendants.

New findings from the University Hospital Bonn (UKB), in collaboration with the University of Bonn, have revealed that specific early alterations in patients with age-related macular degeneration (AMD) can result in noticeable local vision loss. This breakthrough could enhance the treatment and monitoring of this eye condition in elderly patients, which typically progresses to central blindness, and facilitate the testing of new treatments.

AMD mainly affects elderly people. If left untreated, the disease leads to a progressive loss of central vision, which significantly impairs everyday activities such as reading or driving. Researchers around the world are intensively searching for ways to improve the early detection and treatment of this disease before major losses occur.

A research team from the UKB Eye Clinic, in cooperation with the University of Bonn and in close collaboration with basic and clinical scientists, has specifically examined patients with early forms of AMD. The researchers focused on the so-called iRORA lesions, which are very early anatomical signs of retinal damage.

As space travel becomes more common, it is important to consider the impacts of space flight and altered gravity on the human body. Led by Dr. Ana Diaz Artiles, researchers at Texas A&M University are studying some of those impacts, specifically effects on the eye.

Gravitational changes experienced by astronauts during space travel can cause fluids within the body to shift. This can cause changes to the cardiovascular system, including vessels in and around the eyes.

As the commercialization of space flight becomes more common and individual space travel increases, astronauts will not be the only ones experiencing these changes. Individuals traveling to space with commercial companies may not be as fit or healthy as astronauts, making it even more important to understand the role that fluid shift plays in cardiovascular and eye health.