Toggle light / dark theme

Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation – inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.

GRAPHICAL ABSTRACT

To access the video, kindly visit.


Dive into the fascinating world of GlycoRNA in this insightful video! GlycoRNA, a newly emerging field at the intersection of glycobiology and RNA research, explores how glycan modifications on RNA molecules can influence gene expression and cellular function. Join us as we break down the basics of glycoRNA, its role in health and disease, and its potential applications in medicine and biotechnology.
References: https://zfangcs.wordpress.com/2021/06
https://answers.childrenshospital.org
Thank You For Watching.
Please Like And Subscribe to Our Channel: / easypeasylearning.
Like Our Facebook Page: / learningeasypeasy.
Join Our Facebook Group: / 460057834950033
Support Our Channel: / supereasypeasy.

Summary: Researchers have discovered that the protein USP50 regulates DNA replication by managing which enzymes—nucleases or helicases—cleave or unwind DNA strands during replication. This control is crucial for stable replication, especially when the process encounters issues that need restarting. When USP50 is absent, cells struggle to coordinate enzyme use, leading to replication errors and potential genetic instability.

The findings provide new insights into genome maintenance and may help explain some hereditary conditions, such as early-onset aging and certain cancers. Understanding USP50’s role opens doors to potential therapeutic strategies aimed at protecting DNA integrity.

Fortunately, the past decade has experienced a boom, with over 200 startups bringing novel cancer therapies—primarily antibodies, viruses, or cells—into clinical trials aiming to find alternatives to toxic chemotherapy. Despite these innovations, chemotherapy remains an essential yet toxic part of cancer care. In Pittsburgh, a small team of scientist-entrepreneurs and oncologists started meeting every Friday morning before work, collaborating to search for a new chemistry, one that could replace toxic chemotherapies. Their search soon focused on compelling research about novel ultra-small nanomedicine chemistry that carried potent drugs deep into solid tumors while sparing healthy organs.

This new nanomedicine chemistry fascinated Dr. Sam Rothstein, a scientist-entrepreneur with 20+ years of nanomedicine research experience spanning academia and industry. “We could make a real positive impact on patients,” says Rothstein. “We know that nanomedicines, which keep potent therapies out of healthy organs, improve quality of life. But this novel ultrasmall chemistry could go even further, saving lives by reaching remote cancer cells that current therapies can’t touch.”

Dr. Rothstein set to work building a new company, calling on connections made over a 10+-year career as a life science startup CEO and CSO, where he founded and grew two nanomedicine startups from academic discoveries. After months of market, regulatory, and business research, Duo Oncology was born.

Bryan Johnson, a millionaire tech entrepreneur dedicated to reversing ageing, recently took to social media to boast about his “super clean plasma.” In a detailed post on X, he shared that a lab technician couldn’t bring himself to dispose of the plasma after a total plasma exchange (TPE) procedure.

Johnson claims to have reduced his epigenetic age through his comprehensive regimen called Project Blueprint. He follows a strict diet and exercise routine, spends over $2 million annually on a team of doctors and medical equipment, and undergoes both experimental and conventional treatments-including the recent TPE procedure.

TPE, a procedure often used in regenerative medicine and anti-ageing treatments, involves replacing a patient’s plasma with donor plasma or a substitute fluid. In Johnson’s case, his plasma was replaced with albumin.

Micelles are spherical molecular structures usually formed by amphiphilic molecules with block structure, which contain both hydrophilic and hydrophobic parts. The hydrophobic tails of these molecules cluster together to form a core, while the hydrophilic heads face outward, creating a protective shell. This structure allows micelles to encapsulate hydrophobic substances within their core and disperse them in a water-based environment.