Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1946

Apr 24, 2019

Healing device dresses your wound for you

Posted by in category: biotech/medical

This gun treats burn injuries without causing added pain to the victim 💉.

Read more

Apr 24, 2019

Synthetic speech generated from brain recordings

Posted by in categories: biotech/medical, computing, neuroscience

A state-of-the-art brain-machine interface created by UC San Francisco neuroscientists can generate natural-sounding synthetic speech by using brain activity to control a virtual vocal tract—an anatomically detailed computer simulation including the lips, jaw, tongue, and larynx. The study was conducted in research participants with intact speech, but the technology could one day restore the voices of people who have lost the ability to speak due to paralysis and other forms of neurological damage.

Stroke, , and such as Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease) often result in an irreversible loss of the ability to speak. Some people with severe speech disabilities learn to spell out their thoughts letter-by-letter using assistive devices that track very small eye or facial muscle movements. However, producing text or synthesized speech with such devices is laborious, error-prone, and painfully slow, typically permitting a maximum of 10 words per minute, compared to the 100–150 words per minute of natural speech.

Continue reading “Synthetic speech generated from brain recordings” »

Apr 24, 2019

Imaging system helps surgeons remove tiny ovarian tumors

Posted by in category: biotech/medical

Ovarian cancer is usually diagnosed only after it has reached an advanced stage, with many tumors spread throughout the abdomen. Most patients undergo surgery to remove as many of these tumors as possible, but because some are so small and widespread, it is difficult to eradicate all of them.

Researchers at MIT, working with surgeons and oncologists at Massachusetts General Hospital (MGH), have now developed a way to improve the accuracy of this , called debulking. Using a novel fluorescence imaging system, they were able to find and remove tumors as small as 0.3 millimeters—smaller than a poppy seed—during surgery in mice. Mice that underwent this type of image-guided surgery survived 40 percent longer than those who had tumors removed without the guided system.

“What’s nice about this system is that it allows for real-time information about the size, depth, and distribution of tumors,” says Angela Belcher, the James Mason Crafts Professor of Biological Engineering and Materials Science at MIT, a member of the Koch Institute for Integrative Cancer Research, and the recently appointed head of MIT’s Department of Biological Engineering.

Continue reading “Imaging system helps surgeons remove tiny ovarian tumors” »

Apr 24, 2019

A first in medical robotics: Autonomous navigation inside the body

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Bioengineers at Boston Children’s Hospital report the first demonstration of a robot able to navigate autonomously inside the body. In an animal model of cardiac valve repair, the team programmed a robotic catheter to find its way along the walls of a beating, blood-filled heart to a leaky valve—without a surgeon’s guidance. They report their work today in Science Robotics.

Surgeons have used robots operated by joysticks for more than a decade, and teams have shown that tiny robots can be steered through the body by external forces such as magnetism. However, senior investigator Pierre Dupont, Ph.D., chief of Pediatric Cardiac Bioengineering at Boston Children’s, says that to his knowledge, this is the first report of the equivalent of a self-driving car navigating to a desired destination inside the body.

Dupont envisions assisting surgeons in complex operations, reducing fatigue and freeing surgeons to focus on the most difficult maneuvers, improving outcomes.

Continue reading “A first in medical robotics: Autonomous navigation inside the body” »

Apr 24, 2019

A new clue in the mystery of ALS, frontotemporal dementia

Posted by in categories: biotech/medical, genetics, neuroscience

A special focus on rogue proteins may hold future promise in stopping the progression of nerve cell destruction in people who have amyotrophic lateral sclerosis (ALS) or frontotemporal dementia.

ALS, a rare but devastating disorder that’s also known as Lou Gehrig’s disease, attacks the body’s , resulting in progressive muscle weakness as the neurons degenerate over time. There is no cure. People with ALS eventually lose their strength and the ability to move their arms, legs and body.

About a third of those with ALS also develop frontotemporal dementia (FTD), a destruction of neurons in the brain that causes profound personality changes and disability. The two diseases are similar in both pathology and genetics. FTD tends to affect people earlier than Alzheimer’s disease, the most common type of dementia.

Continue reading “A new clue in the mystery of ALS, frontotemporal dementia” »

Apr 24, 2019

Researchers identify neurotransmitter that helps cancers progress

Posted by in categories: biotech/medical, neuroscience

Using human cancer cells, tumor and blood samples from cancer patients, researchers at Johns Hopkins Medicine have uncovered the role of a neurotransmitter in the spread of aggressive cancers. Neurotransmitters are chemical “messengers” that transmit impulses from neurons to other target cells.

The work, described in the April 9 issue of the journal Cell Reports, found that this neurotransmitter, called N-acetyl-aspartyl-glutamate (NAAG) NAAG is more abundant in cancers with a tendency to grow and spread rapidly—or so-called higher grade cancers—than in lower grade tumors, making it a potential marker for tumor progression or regression during cancer therapy, the researchers say. The experiments also demonstrated that NAAG is a source of glutamate, a chemical that cancer cells use as building blocks to survive, in tumors that express an enzyme called glutamate carboxypeptidase II (GCPII). The group also discovered that stopping the GCPII from being active by using a drug called 2-PMPA to treat human ovarian tumors implanted in ovaries of mice, reduced tumor weights and glutamate concentrations.

Read more

Apr 24, 2019

Researchers use machine-learning system to diagnose genetic diseases

Posted by in categories: biotech/medical, genetics, robotics/AI

Researchers at Rady Children’s Institute for Genomic Medicine (RCIGM) have utilized a machine-learning process and clinical natural language processing (CNLP) to diagnose rare genetic diseases in record time. This new method is speeding answers to physicians caring for infants in intensive care and opening the door to increased use of genome sequencing as a first-line diagnostic test for babies with cryptic conditions.

“Some people call this , we call it augmented intelligence,” said Stephen Kingsmore, MD, DSc, President and CEO of RCIGM. “Patient care will always begin and end with the doctor. By harnessing the power of technology, we can quickly and accurately determine the root cause of genetic diseases. We rapidly provide this critical information to physicians so they can focus on personalizing care for babies who are struggling to survive.”

A new study documenting the process was published today in the journal Science Translational Medicine. The workflow and research were led by the RCIGM team in collaboration with leading technology and data-science developers —Alexion, Clinithink, Diploid, Fabric Genomics and Illumina.

Continue reading “Researchers use machine-learning system to diagnose genetic diseases” »

Apr 24, 2019

Self-powered ‘pacemaker for life’ in pigs unveiled

Posted by in category: biotech/medical

Scientists on Tuesday unveiled a battery-free pacemaker that generates its energy from the heartbeats of pigs in what could pave the way for an “implant for life” in humans suffering from heart defects.

Millions of patients rely on pacemakers —small electrical implants in the chest of abdomen—to help regulate their heartbeats after chronic or acute illness.

Even with recent technological advances, pacemaker batteries can be rigid or bulky, and may need replacing several times over the lifespan of a .

Continue reading “Self-powered ‘pacemaker for life’ in pigs unveiled” »

Apr 24, 2019

Modified ‘white graphene’ for eco-friendly energy

Posted by in categories: biotech/medical, materials

Scientists from Tomsk Polytechnic University (TPU), together with colleagues from the United States and Germany, have found a way to obtain inexpensive catalysts from hexagonal boron nitride or “white graphene.” The technology can be used in the production of environmentally friendly hydrogen fuel.

The researchers have found a new way to functionalize a dielectric, otherwise known as white graphene, i.e. (hBN), without destroying it or changing its properties. Thanks to the new method, the researchers synthesized a polymer nano carpet with strong covalent bond on the samples.

Prof Raul Rodriguez from the TPU Research School of Chemistry & Applied Biomedical Sciences explains:

Continue reading “Modified ‘white graphene’ for eco-friendly energy” »

Apr 24, 2019

Secret to lab-on-a-chip breakthrough: Matte black nail polish

Posted by in categories: bioengineering, biotech/medical, genetics

BYU electrical engineering students have stumbled upon a very unconventional method that could speed up lab-on-a-chip disease diagnosis.

When someone goes to the hospital for a serious illness, if a bacterial infection is suspected, it can take up to three days to get results from a bacteria culture test. By then, it is often too late to adequately treat the infection, especially if the bacteria are resistant to common antibiotics.

BYU students are working on a project to diagnose antibiotic resistant bacteria, or superbugs, in less than an hour. Their method relies on extracting bacteria from a blood sample and then pulling DNA from that . If specific genetic codes indicating antibiotic resistance are present in the DNA, fluorescent molecules can be attached to these sites. Laser light can then be shined on the DNA samples and the molecules will light up.

Continue reading “Secret to lab-on-a-chip breakthrough: Matte black nail polish” »