Fellow futurist podcaster Peter Hayward joins me to discuss the challenge of fostering foresight in a short-sighted world.

Researchers at Uppsala University, in Sweden, in collaboration with the SciLifeLab Drug Discovery and Development Platform, have taken “a large step forward” in developing a potential CAR T-cell therapy for glioblastoma, an aggressive form of brain cancer that is often difficult to treat.
Their project is now entering the final preclinical stage of development, according to the university. The goal is to start clinical studies within four years.
“Extremely few breakthroughs have been made around treating Glioblastoma,” Magnus Essand, professor of gene therapy at Uppsala, said in a press release.
Human body bio-factories of tommorow for organ and tissue replacement.
Ira Pastor, ideaXme life sciences ambassador interviews Dr Alexander Titus Chief Strategy Officer (CSO) at the Advanced Regenerative Manufacturing Institute (ARMI).
Ira Pastor comments:
The Advanced Regenerative Manufacturing Institute (ARMI) is one of 14 institutes of the Manufacturing USA network, and is a member-driven, non-profit organization, whose mission is to make practical the large-scale manufacturing of engineered tissues and tissue-related technologies.
BioFabUSA, created by ARMI, was established to lead the charge in large-scale manufacturing of engineered tissues and regenerative medicine research, turning foundational breakthroughs in the manufacture of engineered tissues and tissue-related technologies into life-changing possibilities for everyone.
Researchers are now calling for a set of guidelines, similar to those used in animal research, to guide the humane use of brain organoids and other experiments that could achieve consciousness. In June, the US National Academies of Sciences, Engineering, and Medicine began a study with the aim of outlining the potential legal and ethical issues associated with brain organoids and human-animal chimaeras.
A handful of experiments are raising questions about whether clumps of cells and disembodied brains could be sentient, and how scientists would know if they were.
An international team of researchers has developed a multifunctional skin-mounted microfluidic device that is able to measure stress in people in multiple ways. In their paper published in Proceedings of the National Academy of Sciences, the group describes their device and how it could be useful.
Prior research has shown that long-term stress can damage a person’s health. It can lead to diabetes, depression, obesity and a host of other problems. Some have suggested that one of the ways to combat stress is to create a means for alerting a person to their heightened stress so that they might take action to reduce it. To that end, prior teams have developed skin-adhesive devices that that collect sweat samples. The tiny samples contain small amounts of cortisol, a hormone that can be used as a marker of stress levels. In this new effort, the researchers have improved on these devices by developing one that measures more than just cortisol levels and is much more comfortable.
The researchers began with the notion that in order to convince people to wear a device full time, it had to be both useful and comfortable. The solved the latter issue by making their device out of soft materials that adhere gently to the skin. They also used a skeletal design for their microfluidic sweat-collection apparatus—a flexible mesh. They also added more functionality. In addition to cortisol, their device is able to measure glucose and vitamin C levels. They also added electrodes underneath that are able to measure sweat rate and electrical conductivity of the skin, both of which change in response to stress. They also added a wireless transmitter that sends all of the data to a nearby smartphone running the device’s associated app.
Crews working on the largest U.S. experiment designed to directly detect dark matter completed a major milestone last month, and are now turning their sights toward startup after experiencing some delays due to global pandemic precautions.
U.S. Department of Energy officials on Sept. 21 formally signed off on project completion for LUX-ZEPLIN, or LZ: an ultrasensitive experiment that will use 10 metric tons of liquid xenon to hunt for signals of interactions with theorized dark matter particles called WIMPs, or weakly interacting massive particles. DOE’s project completion milestone is called Critical Decision 4, or CD-4.
Dark matter makes up an estimated 85 percent of all matter in the universe. We know it’s there because of its observed gravitational effects on normal matter, but we don’t yet know what it is. LZ is designed to detect the two flashes of light that occur if a WIMP interacts with the nucleus of a xenon atom.
I am both amazed and wierded out. 😃
A very creative and cool idea! I think it could help a lot of people.
This is an evacuation strap that lets you drag bedridden patients down the stairs.
Credit: Evacuation Equipment
Online health care and medtech AI have risen in prominence in the country as the government seeks more equal access to medicines and treatment for its citizens, spread across a vast land mass. The urgency has been heightened by the impact from Covid-19 – with Indonesia recently overtaking the Philippines as the hardest-hit country in Southeast Asia.
Indonesia’s fast-growing manufacturing sector also presents opportunities for medtech innovation as well as research and development.