Menu

Blog

Archive for the ‘biotech/medical’ category: Page 192

Jan 31, 2024

Cancer epigenetic research accelerated by new sequencing technologies

Posted by in categories: biotech/medical, genetics

Epigenomic analyses suggest promising new approaches for monitoring and treating cancer. What are the analyses uncovering, and how close are they to improving patient outcomes?

Jan 31, 2024

U of T researchers’ AI model designs proteins to deliver gene therapy

Posted by in categories: biotech/medical, robotics/AI

University of Toronto Engineering researchers’ AI model designs proteins to deliver gene therapy ➡️


Researchers at the University of Toronto used an artificial intelligence framework to redesign a crucial protein involved in the delivery of gene therapy.

The study, published in Nature Machine Intelligence, describes new work optimizing proteins to mitigate immune responses, thereby improving the efficacy of gene therapy and reducing side effects.

Continue reading “U of T researchers’ AI model designs proteins to deliver gene therapy” »

Jan 31, 2024

Scientists build high power cladding-pumped Raman fiber laser at 1.2 μm waveband

Posted by in category: biotech/medical

Laser sources operating at the 1.2 μm wavelength band have some unique applications in photodynamic therapy, biomedical diagnosis and oxygen sensing. Additionally, they can be adopted as pump sources for mid-infrared optical parametric generation as well as visible light generation by frequency doubling.

Laser generation at 1.2 μm waveband has been achieved with different solid-state lasers including semiconductor lasers, diamond Raman lasers, and fiber lasers. Among these three types, the fiber laser thanks to its simple structure, good beam quality, and operation flexibility, is a great choice for 1.2 μm waveband laser generation.

Researchers led by Prof. Pu Zhou at National University of Defense Technology (NUDT), China, are interested in a fiber laser at 1.2 μm waveband. Current high power fiber lasers are mostly ytterbium-doped fiber lasers at 1 μm waveband, and the maximum output at 1.2 μm waveband is limited at 10-watt level.

Jan 31, 2024

Scientists pinpoint growth of brain’s cerebellum as key to evolution of bird flight

Posted by in categories: biotech/medical, evolution, neuroscience

Evolutionary biologists at Johns Hopkins Medicine report they have combined PET scans of modern pigeons along with studies of dinosaur fossils to help answer an enduring question in biology: How did the brains of birds evolve to enable them to fly?

The answer, they say, appears to be an adaptive increase in the size of the cerebellum in some fossil vertebrates. The cerebellum is a brain region responsible for movement and motor control.

The research findings are published in the Jan. 31 issue of the Proceedings of the Royal Society B.

Jan 30, 2024

Cervical cancer is preventable, yet rising number of women in poor regions are getting it

Posted by in category: biotech/medical

The findings aren’t as simple as increased detection, seen with increases in late-stage cancer for white women and mortality among Black women.

Jan 30, 2024

YouTube: This CU Cancer Center’s Education Working Group Lunch and Learn features Stacy Grolnic

Posted by in categories: biotech/medical, education

https://www.youtube.com/watch?si\u003dGp5uRChnBm-OuMqT\u0026v\u003d1Kt58VJCt5c\u0026feature\u003dyoutu.be

RN, BSN, breelyn wilky, MD, denise castillo, tessa mcspadden, stephanie hill, MA, CCRP, and tiffany cull.

Jan 30, 2024

New AI model designs proteins to deliver gene therapy

Posted by in categories: biotech/medical, robotics/AI

Researchers at the University of Toronto have used an artificial intelligence framework to redesign a crucial protein involved in the delivery of gene therapy.

The study, published in Nature Machine Intelligence, describes new work optimizing proteins to mitigate immune responses, thereby improving the efficacy of gene therapy and reducing side effects.

“Gene therapy holds immense promise, but the body’s pre-existing to viral vectors greatly hampers its success. Our research zeroes in on hexons, a fundamental protein in adenovirus vectors, which—but for the immune problem—hold huge potential for gene therapy,” says Michael Garton, an assistant professor at the Institute of Biomedical Engineering in the Faculty of Applied Science & Engineering.

Jan 30, 2024

Brain drain: How nasal and lymphatic drainage discovery could help end Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

This is interesting. Who knew brain drain would be helpful? Haha it’s a different context but it’s medicinal in this sense. Amazing discovery!


Estimated read time: 2–3 minutes.

SALT LAKE CITY — Add this to the list of potential targets to treat Alzheimer’s and other neurodegenerative disorders: Researchers in South Korea have discovered a network of lymphatic vessels at the back of the nose that help drain cerebral spinal fluid from the brain.

Continue reading “Brain drain: How nasal and lymphatic drainage discovery could help end Alzheimer’s” »

Jan 30, 2024

Licensing NASA Tech: Bridging Government to Commerce

Posted by in categories: biotech/medical, government, information science, robotics/AI

While NASA is well-known for advancing various technologies for the purposes of space exploration, whether it’s sending spacecraft to another world or for use onboard the International Space Station (ISS), the little-known fact is that these same technologies can be licensed for commercial use to benefit humankind right here on the Earth through NASA’s Spinoff program, which is part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. This includes fields like communication, medical, weather forecasting, and even the very mattresses we sleep on, and are all featured in NASA’s annual Spinoff book, with NASA’s 2024 Spinoff book being the latest in sharing these technologies with the private sector.

“As NASA’s longest continuously running program, we continue to increase the number of technologies we license year-over-year while streamlining the development path from the government to the commercial sector,” Daniel Lockney, Technology Transfer Program Executive at NASA Headquarters, said in a statement. “These commercialization success stories continually prove the benefits of transitioning agency technologies into private hands, where the real impacts are made.”

One example is a medical-grade smartwatch called EmbracePlus developed by Empatica Inc., which uses machine learning algorithms to monitor a person’s vitals, including sleep patterns, heart rate, and oxygen flow. EmbracePlus reached mass production status in 2021 and has been approved by the U.S. Food and Drug Administration (FDA) with the goal of using the smartwatch for astronauts on future spaceflights, including the upcoming Artemis missions, along with medical patients back on Earth.

Jan 30, 2024

Light My Fire: COUR Raises $105M Series A to Advance Tolerogenic Nanoparticles for Autoimmunity

Posted by in categories: biotech/medical, nanotechnology

Steve P. Miller, PhD, has spent much of his career figuring out how to shut off autoimmune responses when he observed dying cells acting as carriers of autoantigens that could modulate the immune system. More than 20 years ago, while a professor at Northwestern University’s Feinberg School of Medicine, Miller discovered that dendritic cells (DCs), a subtype of antigen-presenting cells (APCs), could be changed or turned off to send the right signals to make immunologically tolerant T cells, also known as “tolerogenic.”

Miller’s attention turned toward investigating how best to mimic the apoptotic cells, overriding the expression of dendritic cells. So, Miller partnered with polymer chemist Lonnie D. Shea, PhD, who was at the McCormick School of Engineering, to develop a nanoparticle that interacts effectively with dendritic cells.

In 2013, Miller and Shea helped launch a company spun out of Northwestern University, when Shea was still in Chicago, called Cour Pharmaceutical Development Company, to develop innovative nanobiological therapeutics for acute inflammation, autoimmune, and allergic conditions. After years of experimentation, they developed a formula for nanoparticles of the right size and charge that interact well with the immune system, which is the foundation for their proprietary antigen-specific immune tolerance platform.

Page 192 of 2,639First189190191192193194195196Last