Toggle light / dark theme

“Mini-Brains” Grown in a Lab Provide Clues About Early Life Origins of Schizophrenia

Multiple changes in brain cells during the first month of embryonic development may contribute to schizophrenia later in life, according to a new study by Weill Cornell Medicine investigators.

The researchers, whose study was published in Molecular Psychiatry, used stem cells collected from patients with schizophrenia and people without the disease to grow 3-dimensional “mini-brains” or organoids in the laboratory. By comparing the development of both sets of organoids, they discovered that a reduced expression of two genes in the cells stymies early development and causes a shortage of brain cells in organoids grown from patient stem cells.

“This discovery fills an important gap in scientists’ understanding of schizophrenia,” said senior author Dr. Dilek Colak, assistant professor of neuroscience at the Feil Family Brain and Mind Institute and the Center for Neurogenetics at Weill Cornell Medicine. Symptoms of schizophrenia typically develop in adulthood, but postmortem studies of the brains of people with the disease found enlarged cavities called ventricles and differences in the cortical layers that likely occurred early in life.

Inspired by insects, engineers create spiky materials that could pop bacteria

Researchers have created intricately patterned materials that mimic antimicrobial, adhesive and drag reducing properties found in natural surfaces.

The team from Imperial College London found inspiration in the wavy and spiky surfaces found in insects, including on cicada and dragonfly wings, which ward off .

They hope the new could be used to create self-disinfecting surfaces and offer an alternative to chemically functionalized surfaces and cleaners, which can promote the growth of antibiotic-resistant bacteria.

New brain imaging technique suggests memories are stored in the connections between your neurons

All memory storage devices, from your brain to the RAM in your computer, store information by changing their physical qualities. Over 130 years ago, pioneering neuroscientist Santiago Ramón y Cajal first suggested that the brain stores information by rearranging the connections, or synapses, between neurons.

Since then, neuroscientists have attempted to understand the physical changes associated with memory formation. But visualizing and mapping synapses is challenging to do. For one, synapses are very small and tightly packed together. They’re roughly 10 billion times smaller than the smallest object a standard clinical MRI can visualize. Furthermore, there are approximately 1 billion synapses in the mouse brains researchers often use to study brain function, and they’re all the same opaque to translucent color as the tissue surrounding them.

A new imaging technique my colleagues and I developed, however, has allowed us to map synapses during memory formation. We found that the process of forming new memories changes how brain cells are connected to one another. While some areas of the brain create more connections, others lose them.

Planting trees in pastureland provides significant cooling in the tropics

Farmers struggling to adapt to rising temperatures in tropical regions can unleash the benefits of natural cooling, alongside a host of other wins, simply by dotting more trees across their pasturelands. For the first time, a study led by the University of Washington puts tangible numbers to the cooling effects of this practice.

Researchers at the UW and The Nature Conservancy, along with Duke University, the University of California San Diego and Stony Brook University Hospital, find that adding trees to pastureland, technically known as silvopasture, can cool local temperatures by up to 2.4 C (4.3 F) for every 10 metric tons of woody material added per hectare (about 4 tons per acre) depending on the density of trees, while also delivering a range of other benefits for humans and wildlife.

The paper was published Feb. 4 in Nature Communications.

Researchers develop methodology for streamlined control of material deformation

Can you crumple up two sheets of paper the exact same way? Probably not—the very flexibility that lets flexible structures from paper to biopolymers and membranes undergo many types of large deformations makes them notoriously difficult to control. Researchers from the Georgia Institute of Technology, Universiteit van Amsterdam, and Universiteit Leiden have shed new light on this fundamental challenge, demonstrating that new physical theories provide precise predictions of the deformations of certain structures, as recently published in Nature Communications.

In the paper, Michael Czajkowski and D. Zeb Rocklin from Georgia Tech, Corentin Coulais from Universiteit van Amsterdam, and Martin van Hecke of AMOLF and Universiteit Leiden approach a highly studied exotic elastic material, uncover an intuitive geometrical description of the pronounced—or nonlinear—soft deformations, and show how to activate any of these deformations on-demand with minimal inputs. This new theory reveals that a flexible mechanical structure is governed by some of the same math as electromagnetic waves, phase transitions, and even black holes.

“So many other systems struggle with how to be strong and solid in some ways but flexible and compliant in others, from the human body and micro-organisms to clothing and industrial robots,” said Rocklin. “These structures solve that problem in an incredibly elegant way that permits a single folding mechanism to generate a wide family of deformations. We’ve shown that a single folding mode can transform a structure into an infinite family of shapes.”

New set of chemical building blocks makes complex 3D molecules in a snap

A new set of molecular building blocks aims to make complex chemistry as simple and accessible as a toy construction kit.

Researchers at the University of Illinois Urbana-Champaign and collaborators at Revolution Medicines Inc. developed a new class of chemical building blocks that simply snap together to form 3D with complex twists and turns, and an automated machine to assemble the blocks like a 3D printer for molecules.

This automation could allow chemists and nonchemists alike to develop new pharmaceuticals, materials, diagnostic probes, catalysts, perfumes, sweeteners and more, said study leader Dr. Martin D. Burke, a professor of chemistry at Illinois and a member of the Carle Illinois College of Medicine, as well as a medical doctor. The researchers reported their findings in the journal Nature.

Dr. Stephani Otte, Ph.D. — Chan Zuckerberg Initiative — Measuring Human Biology in Action

Measuring Human Biology in Action, To Cure, Prevent Or Manage All Diseases — Dr. Stephani Otte, Ph.D., Science Program Officer, Imaging, Chan Zuckerberg Initiative.


Dr. Stephani Otte, Ph.D is Science Program Officer, Imaging, at the Chan Zuckerberg Initiative (https://chanzuckerberg.com/), who leads the organization’s Imaging program and is focused on the creation, dissemination, optimization, and standardization of transformative imaging technologies.

Prior to CZI, Dr. Otte was Director of Science at a neuro-technology / microscopy company, Inscopix, involved in accelerating brain science and innovating mini-scope microscope solutions for real-time mapping of the human brain and it’s circuits.

Dr. Otte received her Ph.D. in Neuroscience at the University of California, San Diego, and did postdoctoral fellowships in systems neuroscience at the Salk Institute and University of California, Berkeley.

The Chan Zuckerberg Initiative is an organization established and owned by Dr. Priscilla Chan and her husband, Facebook founder Mark Zuckerberg, with a focus on science, education, immigration reform, housing, criminal justice, and other local issues, with a mission to “build a more inclusive, just, and healthy future for everyone” and to “advance human potential and promote equality in areas such as health, education, scientific research and energy”.

/* */