Toggle light / dark theme

A breakthrough at last? Millions with Alzheimer’s anxiously await FDA decision on new drug

It’s been nearly two decades since medical science has produced a new treatment for Alzheimer’s. Is that drought about to end?


June 7 will be a big day in the life of Jeff Borghoff — not to mention the more than 6 million other Americans living with Alzheimer’s disease.

On that date, the U.S. Food and Drug Administration is expected to announce whether it will give its blessing to the first new drug for the treatment of Alzheimer’s since 2003.

Borghoff fervently hopes the answer is yes. The 57-year-old resident of Forked River has been taking the drug for several years now, and he’s convinced it has helped significantly slow the progression of his dementia.

Using CRISPR to lower cholesterol levels in monkeys

A team of researchers from Verve Therapeutics and the Perelman School of Medicine at the University of Pennsylvania has developed a CRISPR gene-editing technique that lowered the levels of cholesterol in the blood of test monkeys. In their paper published in the journal Nature, the researchers describe their technique.

Prior research has shown that in some people, the PCSK9 gene codes excess PCSK9 protein production (which occurs mostly in the liver)—leading to an increase in lipoprotein cholesterol levels in the bloodstream. This is because it interferes with blood cells with LDL receptors that “grab” LDL and remove it. For this reason, have developed therapies that reduce the production of PCSK9 protein. However, most do not work well enough, which is why there is still so much atherosclerotic cardiovascular disease. In this new effort, the researchers have tried another approach—altering the PCSK9 gene to make it stop coding for PCSK9 protein production.

The approach involved using a base editing technology made up of messenger RNA encoding for an along with guided RNA that was packaged in a lipid nanoparticle. Notably, the base editing technique was able to substitute a single nucleotide with another in the DNA without cutting the double helix. Prior research has shown the technique to be more precise, which means fewer errors than other CRISPR techniques. In their work, the researchers replaced an adenine with a guanine and a thymine with a cytosine, completely incapacitating the gene. Implementation of the therapy involved a one-time injection into the liver of cynomolgus monkeys.

Robotic ‘Third Thumb’ use can alter brain representation of the hand

Using a robotic ‘Third Thumb’ can impact how the hand is represented in the brain, finds a new study led by UCL researchers.

The team trained people to use a robotic extra and found they could effectively carry out dextrous tasks, like building a tower of blocks, with one hand (now with two thumbs). The researchers report in the journal Science Robotics that participants trained to use the thumb also increasingly felt like it was a part of their body.

Designer Dani Clode began developing the device, called the Third Thumb, as part of an award-winning graduate project at the Royal College of Art, seeking to reframe the way we view prosthetics, from replacing a lost function, to an extension of the human body. She was later invited to join Professor Tamar Makin’s team of neuroscientists at UCL who were investigating how the can adapt to body augmentation.

BREAKING! University of Oklahoma Study Indicates That SARS-CoV-2 Might Cause Serum Amyloid A (SAA) Amyloidosis And Even Alzheimer Ultimately!

A new study by researchers from University of Oklahoma has found that the SARS-CoV-2 coronavirus could be causing a secondary medical condition known as Serum Amyloid A (SAA) Amyloidosis.

The proteins Serum amyloid A (SAA) are a family of apolipoproteins associated with high-density lipoprotein (HDL) in plasma. Different isoforms of SAA are expressed constitutively (constitutive SAAs) at different levels or in response to inflammatory stimuli (acute phase SAAs). These proteins are produced predominantly by the liver.

Groundbreaking Research Optimizes Body’s Own Immune System to Fight Cancer

First-of-its-kind study shows how engineered immune cells move faster to attack the tumor.

A groundbreaking study led by engineering and medical researchers at the University of Minnesota Twin Cities shows how engineered immune cells used in new cancer therapies can overcome physical barriers to allow a patient’s own immune system to fight tumors. The research could improve cancer therapies in the future for millions of people worldwide.

The research is published in Nature Communications, a peer-reviewed, open access, scientific journal published by Nature Research.

This Beating Sesame Seed-Sized ‘Human Heart’ Grew Itself in a Lab

Scientists have successfully grown a bundle of human stem cells into a tiny artificial “heart” the size of a sesame seed.

The pulsating mass is the first self-organizing miniature organ to resemble the human heart, including a hollow chamber enclosed by a wall of cardiac-like tissue.

Simple heart-like organs, or cardioids, have been built in the lab before, but only using a scaffold, a mold, or a matrix for the cells to assemble around.

AI-Powered Smart Toilet May Soon Analyze Poop for Health Problems

Artificial intelligence tool can be used for long-term tracking and management of chronic gastrointestinal ailments.

An artificial intelligence tool under development at Duke University can be added to the standard toilet to help analyze patients’ stool and give gastroenterologists the information they need to provide appropriate treatment, according to research that was selected for presentation at Digestive Disease Week® (DDW) 2021. The new technology could assist in managing chronic gastrointestinal issues such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS).

“Typically, gastroenterologists have to rely on patient self-reported information about their stool to help determine the cause of their gastrointestinal health issues, which can be very unreliable,” said Deborah Fisher, MD, one of the lead authors on the study and associate professor of medicine at Duke University Durham, North Carolina. “Patients often can’t remember what their stool looks like or how often they have a bowel movement, which is part of the standard monitoring process. The Smart Toilet technology will allow us to gather the long-term information needed to make a more accurate and timely diagnosis of chronic gastrointestinal problems.”

The women possibly at higher risk for Covid-19 that no one is talking about

Last July, when her immediate family tested positive for Covid-19, Breanna Aguilar did not fit into any groups considered at higher risk for severe disease.

She is 31 years old, a pet sitter and former fitness teacher who once ran a half marathon. She was, by most measures, healthy.

When Aguilar got Covid-19 she lost her sense of taste, had mild fevers and muscle weakness. She could barely keep anything down yet gained about 30 pounds. Later, she developed pelvic pain, cystic acne, breast tenderness, headaches, brain fog and extreme fatigue.