Toggle light / dark theme

Rapamycin linked to DNA damage resilience in aging human immune cells

University of Oxford-led research finds low-dose rapamycin functions as a genomic protector in aging human immune cells, lowering DNA damage.

The mechanistic target of rapamycin (mTOR) is a central signaling pathway that regulates and coordinates cell growth, metabolism, and survival in response to environmental cues. It helps cells integrate signals from growth factors, nutrients, and stress to control whether they are in an anabolic (building up) or catabolic (breaking down) state.

Aging immune systems accumulate DNA damage linked to immunosenescence. Rapamycin is a drug that inhibits the mTOR pathway. Originally developed for organ transplantation to prevent immune rejection, previous research has found that, at non-immunosuppressive doses, rapamycin can mitigate cellular senescence.

Is Chronic Kidney Disease Due to Cadmium Exposure Inevitable and Can It Be Reversed?

Cadmium (Cd) is a metal with no nutritional value or physiological role. However, it is found in the body of most people because it is a contaminant of nearly all food types and is readily absorbed. The body burden of Cd is determined principally by its intestinal absorption rate as there is no mechanism for its elimination. Most acquired Cd accumulates within the kidney tubular cells, where its levels increase through to the age of 50 years but decline thereafter due to its release into the urine as the injured tubular cells die. This is associated with progressive kidney disease, which is signified by a sustained decline in the estimated glomerular filtration rate (eGFR) and albuminuria. Generally, reductions in eGFR after Cd exposure are irreversible, and are likely to decline further towards kidney failure if exposure persists.

AI model offers accurate and explainable insights to support autism assessment

Scientists have developed and tested a deep-learning model that could support clinicians by providing accurate results and clear, explainable insights—including a model-estimated probability score for autism.

The model, outlined in a study published in eClinicalMedicine, was used to analyze resting-state fMRI data—a non-invasive method that indirectly reflects via blood-oxygenation changes.

In doing so, the model achieved up to 98% cross-validated accuracy for Autism Spectrum Disorder (ASD) and neurotypical classification and produced clear, explainable maps of the brain regions most influential to its decisions.

Shape-shifting material could transform future of implantable and ingestible medical devices

Researchers led by Rice University’s Yong Lin Kong have developed a soft but strong metamaterial that can be controlled remotely to rapidly transform its size and shape.

The invention, published in Science Advances, represents a significant advancement that can potentially transform ingestible and .

Metamaterials are synthetic constructs that exhibit unusual properties not typically found in . Instead of relying solely on , the effective behavior of these materials is primarily determined by the physical structure, i.e., the specific shape, arrangement and scale of their building blocks.

‘Rhythm beats volume’: How the brain keeps the world looking familiar

The brain is famously plastic: Neurons’ ability to change their behavior in response to new stimuli is what makes learning possible. And even neurons’ response to the same stimuli changes over time—a phenomenon known as representational drift. Yet our day-to-day perception of the world is relatively stable. How so?

Resolving such puzzles matters for future brain-computer interfaces, sensory prostheses and therapies for neurological disease. On a quest for an answer, Rice University scientists have built ultraflexible probes thousands of times thinner than a and used them to track neurons in the visual cortex of mice for 15 consecutive days as the animals viewed thousands of images—from line patterns to pictures of the natural world.

The devices, called nanoelectronic threads (NETs), embed seamlessly with , allowing for high-fidelity chronic recordings of .

Chemists create light-switchable magnets that remain active for hours

A research team from the University of Chemistry and Technology, Prague (UCT Prague) and the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague) has created and described a new type of photoswitch. The molecule, a thienyl-based acylhydrazone, undergoes an unprecedented “closed-to-open-shell” transformation, where light converts it into a stable diradical.

While previously published lifetimes of such triplet states are a few milliseconds, this ’s switched state has a half-life of over six hours. This revolutionary innovation opens the way for optimizing , developing new and spintronic devices, and targeted elimination of antibiotic-resistant pathogens. The work is published in the Journal of Materials Chemistry C.

Photoswitches are molecules that change between two states under the influence of light. This new switch is unique because it transitions from a stable, non-magnetic (closed-shell) state to an exceptionally long-lived magnetic (open-shell triplet) state. In this triplet state, two electrons have parallel spins, making the molecule paramagnetic and highly reactive. This state is crucial for many photochemical processes, including the generation of .

Researchers develop colorized X-ray imaging for clearer material and tissue analysis

When German physicist Wilhelm Röntgen discovered X-rays in the late 1800s while experimenting with cathode ray tubes, it was a breakthrough that transformed science and medicine. So much so that the basic concept remains in use today. But a team of researchers at Sandia National Laboratories believes they’ve found a better way, harnessing different metals and the colors of light they emit.

“It’s called colorized hyperspectral X-ray imaging with multi-metal targets, or CHXI MMT for short,” said project lead Edward Jimenez, an optical engineer. Jimenez has been working with materials scientist Noelle Collins and electronics engineer Courtney Sovinec to create X-rays of the future.

“With this new technology, we are essentially going from the old way, which is black and white, to a whole new colored world where we can better identify materials and defects of interest,” Collins said.

Physicists create new electrically controlled silicon-based quantum device

A team of scientists at Simon Fraser University’s Quantum Technology Lab and leading Canada-based quantum company Photonic Inc. have created a new type of silicon-based quantum device controlled both optically and electrically, marking the latest breakthrough in the global quantum computing race.

The research, published in the journal Nature Photonics, reveals new diode nanocavity devices for electrical control over silicon color center qubits.

The devices have achieved the first-ever demonstration of an electrically-injected single-photon source in silicon. The breakthrough clears another hurdle toward building a quantum computer—which has enormous potential to provide computing power well beyond that of today’s supercomputers and advance fields like chemistry, materials science, medicine and cybersecurity.

Engineers uncover why tiny particles form clusters in turbulent air

Tiny solid particles—like pollutants, cloud droplets and medicine powders—form highly concentrated clusters in turbulent environments like smokestacks, clouds and pharmaceutical mixers.

What causes these extreme clusters—which make it more difficult to predict everything from the spread of wildfire smoke to finding the right combination of ingredients for more effective drugs—has puzzled scientists.

A University at Buffalo study, published in Proceedings of the National Academy of Sciences, suggests the answer lies within the electric forces between particles.

/* */