Menu

Blog

Archive for the ‘biotech/medical’ category: Page 173

Feb 9, 2024

SynMoss project grows moss with partially synthetic genes

Posted by in categories: bioengineering, biotech/medical, food, genetics

A Chinese team of life scientists, microbiologists, plant researchers and seed designers has developed a way to grow engineered moss with partially synthetic genes. In their project, reported in the journal Nature Plants, the group engineered a moss that is one of the first living things to have multiple cells carrying a partially artificial chromosome.

Several research projects have been working toward the goal of creating plants with synthetic —such plants could be programmed to produce more food, for example, or more oxygen, or to pull more from the air. Last year, one team of researchers developed a way to program up to half of the genome of yeast cells using synthetic genes.

In this new effort, the team in China upped the ante by replacing natural genes with genes created in a lab—moss is far more genetically complex than yeast. They call their project SynMoss.

Feb 9, 2024

Ultrasound Reverses Senescence in Cells

Posted by in categories: biotech/medical, chemistry, life extension

A new study claims that low-frequency ultrasound can reverse aspects of replicative and chemically induced senescence in vitro [1].

The age-related increase in senescent cell burden is thought to contribute to many processes of aging. Most of the attempts to deal with it involve senolytics: drugs that eliminate senescent cells.

However, it may be possible to re-educate them instead. Senomorphics are compounds that change senescent cells in a way that renders them benign, but they are much less common. The authors of this new pre-print study (it has not yet been peer-reviewed) claim to have found an even more impressive way to solve the senescent cell problem: by rejuvenating them with ultrasound.

Feb 9, 2024

Faulty DNA disposal system found to cause inflammation

Posted by in categories: biotech/medical, genetics, life extension, nuclear energy

Cells in the human body contain power-generating mitochondria, each with their own mtDNA—a unique set of genetic instructions entirely separate from the cell’s nuclear DNA that mitochondria use to create life-giving energy. When mtDNA remains where it belongs (inside of mitochondria), it sustains both mitochondrial and cellular health—but when it goes where it doesn’t belong, it can initiate an immune response that promotes inflammation.

Now, Salk scientists and collaborators at UC San Diego have discovered a novel mechanism used to remove improperly functioning mtDNA from inside to outside the mitochondria. When this happens, the mtDNA gets flagged as foreign DNA and activates a normally used to promote to rid the cell of pathogens, like viruses.

The findings, published in Nature Cell Biology, offer many new targets for therapeutics to disrupt the inflammatory pathway and therefore mitigate inflammation during aging and diseases, like lupus or rheumatoid arthritis.

Feb 9, 2024

Pioneering technique reveals new layer of human gene regulation

Posted by in categories: biotech/medical, genetics

A technique can determine for the first time how frequently, and exactly where, a molecular event called “backtracking” occurs throughout the genetic material (genome) of any species, a new study shows.

Published online February 9 in Molecular Cell, the study results support the theory that backtracking represents a widespread form of gene regulation, which influences thousands of , including many involved in basic life processes like and development in the womb.

Led by researchers from NYU Grossman School of Medicine, the work revolves around genes, the stretches of DNA molecular “letters” arranged in a certain order (sequence) to encode the blueprints for most organisms. In both humans and bacteria, the first step in a gene’s expression, transcription, proceeds as a protein “machine” called RNA polymerase II ticks down the DNA chain, reading genetic instructions in one direction.

Feb 9, 2024

Revolutionizing Diabetes Prediction: Simple Blood Test Outperforms Complex Methods, Thanks to Mathematical Modeling

Posted by in categories: biotech/medical, mathematics

Discover how a simple blood test is transforming diabetes prediction, outperforming complex methods, all thanks to the power of mathematical modeling.

Feb 9, 2024

Heart organoids simulate pregestational diabetes-induced congenital heart disease

Posted by in category: biotech/medical

An advanced human heart organoid system can be used to model embryonic heart development under pregestational diabetes-like conditions, researchers report in the journal Stem Cell Reports.

The organoids recapitulate hallmarks of pregestational diabetes-induced congenital heart disease found in mice and humans. The findings also showed that (ER) stress and lipid imbalance are critical factors contributing to these disorders, which could be ameliorated with exposure to omega-3s.

Continue reading “Heart organoids simulate pregestational diabetes-induced congenital heart disease” »

Feb 9, 2024

Is There a Place for Digital Pathology in Cancer Diagnosis?

Posted by in categories: biotech/medical, life extension

Histopathology describes the process of examining pieces of tissue using a microscope. Light microscopic (LM) examination of tissue helps diagnose several types of cancer by allowing pathologists to view cellular changes within a biopsy sample.

The workload of pathologists has increased in recent years due to policies that encourage screening for early cancer diagnoses. In addition, longer life expectancies and scientific advances have led to an increased number of cancer survivors, further increasing the need for pathology evaluations. Thus, strategies to efficiently utilize the limited pathology resources have become essential to maintaining standards of care and the health and safety of patients.

Digital pathology (DP) has emerged as an alternative method for analyzing tissue samples by stitching together digital images from histopathology slides. Automated slide scanners can rapidly generate these high-resolution images with minimal human interaction. In addition to the speed, DP does not require a microscope, offering remote viewing possibilities. Pathologists and other healthcare professionals can easily share images.

Feb 9, 2024

Mirror-image molecules separated using workhorse of chemistry

Posted by in categories: biotech/medical, chemistry

The ability to distinguish between left-and right-handed molecules using mass spectrometry could streamline a laborious part of drug discovery.

Feb 9, 2024

Daedalus, which is building precision-manufacturing factories powered by AI, raises $21M

Posted by in categories: biotech/medical, robotics/AI

A fledgling startup founded by one of OpenAI’s first engineering hires is looking to “redefine manufacturing,” with AI-powered factories for creating bespoke precision parts.

Daedalus, as the company is called, is based in the southwestern German city of Karlsruhe, where its solo factory is currently housed. Here, Daedalus takes orders from industries such as medical devices, aerospace, defense, and semiconductors, each requiring unique components for their products. For example, a pharmaceutical company might require a customized metal casing for a valve used in the production of a particular medicine.

As it looks to ramp up operations with a view toward opening additional factories in its domestic market, Daedalus today announced it has raised $21 million in a Series A round of funding led by Nokia-funded NGP Capital, with participation from existing investors Khosla Ventures and Addition.

Feb 9, 2024

Urokinase therapy improves diabetic foot ulcers healing and decreases CV events in diabetes patients

Posted by in category: biotech/medical

Urokinase therapy improves diabetic foot ulcer healing and decreases CV events in diabetes patients suggests a new study published in the BMJ Open Diabetes Research & Care.

Diabetic foot ulcer (DFU) is a disabling complication of diabetes mellitus. Here, we attempted to assess whether long-term intrafemoral artery infusion of low-dose urokinase therapy improved Diabetic foot ulcers and decreased cardiovascular events in patients with Diabetic foot ulcers were randomized to continuous intrafemoral thrombolysis or conventional therapy groups. The continuous intrafemoral thrombolysis group received continuous intrafemoral urokinase injection for 7 days, and conventional therapy just received wound debridement and dressing change. Then, a follow-up of average 6.5 years was performed. Results: Compared with conventional therapy, at the first 1 month of intervention stage, the ulcers achieved a significant improvement in continuous intrafemoral thrombolysis group including a complete closure (72.4% vs 17.5%), an improved ulcer (27.6% vs 25.8%), unchanged or impaired ulcer (0% vs 56.7%). During the 6.

Page 173 of 2,634First170171172173174175176177Last