Toggle light / dark theme

Herpes virus reshapes the human genome for its own benefit, but a single enzyme can stop it

Viruses are entirely dependent on their hosts to reproduce. They ransack living cells for parts and energy and hijack the host’s cellular machinery to make new copies of themselves. Herpes simplex virus-1 (HSV-1), it turns out, also redecorates, according to a study in Nature Communications.

Researchers at the Center for Genomic Regulation (CRG) in Barcelona have discovered the cold sore reshapes the human genome’s architecture, rearranging its shape in three-dimensional space so that HSV-1 can access host genes most useful for its ability to reproduce.

“HSV-1 is an opportunistic interior designer, reshaping the human genome with great precision and choosing which bits it comes into contact with. It’s a novel mechanism of manipulation we didn’t know the virus had to exploit host resources,” says Dr. Esther González Almela, first author of the study.

Researcher’s lifelong work sheds light on neurodegenerative diseases caused by errors in cellular protein production

One of the great biological mysteries of the human body is how hundreds of complex, origami-like proteins, many of which are crucial for normal body function, come to assume their final, correct shape.

New all-silicon computer vision hardware advances in-sensor visual processing technology

Researchers at the University of Massachusetts Amherst have pushed forward the development of computer vision with new, silicon-based hardware that can both capture and process visual data in the analog domain. Their work, described in the journal Nature Communications, could ultimately add to large-scale, data-intensive and latency-sensitive computer vision tasks.

“This is very powerful retinomorphic hardware,” says Guangyu Xu, associate professor of electrical and engineering and adjunct associate professor of biomedical engineering at UMass Amherst. “The idea of fusing the sensing unit and the processing unit at the device level, instead of physically separating them apart, is very similar to the way that process the visual world.”

Existing computer vision systems often involve exchanging redundant data between physically separated sensing and computing units.

Record-Breaking: Scientists Create Shortest Hard X-Ray Laser Pulses Yet

Researchers used powerful XFELs to trigger strong inner-shell lasing, producing attosecond hard X-ray pulses. Filamentation and Rabi cycling helped explain these effects. Lasers, once confined to the realm of science fiction, are now widely used in research, medicine, and even everyday entertainm

MIT’s Once-a-Week Pill Could Revolutionize Schizophrenia Treatment

The ingestible capsule creates a drug depot in the stomach, slowly releasing its medication over time and removing the need for patients to take a daily dose. For many people living with schizophrenia, other psychiatric conditions, or chronic illnesses like hypertension and asthma, taking medicat

Scientists Say Humans May Become Immortal by 2050 Here’s How

Will humans soon live forever? Scientists believe it’s possible — and it could happen as early as 2050.
In this video, we explore 10 shocking scientific breakthroughs that are pushing humanity closer to immortality.
From nanobots that cure disease from within, to brain uploading, cloning organs, and AI-driven consciousness — this is the future of life itself.

🧬 Get ready to discover the jaw-dropping technologies that might just make death optional.

⚠️ Don’t blink. The future is coming faster than you think.

New strategy for the treatment of severe childhood cancer

Researchers at Karolinska Institutet and Lund University have identified a new treatment strategy for neuroblastoma, an aggressive form of childhood cancer. By combining two antioxidant enzyme inhibitors, they have converted cancer cells in mice into healthy nerve cells. The study is published in the journal Proceedings of the National Academy of Sciences (PNAS).

Palm-sized device detects disease markers in under 45 minutes without additional lab equipment

Scientists from the National University of Singapore (NUS) have developed NAPTUNE (Nucleic Acids and Protein biomarkers Testing via Ultra-sensitive Nucleases Escalation), a point-of-care assay that identifies trace amounts of disease-related genetic material, including nucleic acid and protein markers, in less than 45 minutes. Importantly, it accomplished this without the need for laboratory equipment or complex procedures.

Lying at the heart of many modern diagnostics, (PCR) and real-time immunoassays provide high accuracy. However, they are hindered by lengthy processing time, the need for specialized thermal cyclers and skilled personnel. These constraints hamper rapid outbreak management, early cancer screening and bedside decision-making, especially in low-resource settings.

NAPTUNE tackles these challenges by replacing bulky amplification steps with a tandem nuclease cascade that converts biological signals directly into readily detectable DNA fragments, streamlining the diagnostic process.

Study reveals ‘switch-like’ behavior for hundreds of genes with links to human disease

Gene expression, where cells use the genetic information encoded in DNA to produce proteins, has been thought of as a dimmer light.

How much a particular gene gets expressed continually rises and falls, depending on the needs of a cell at any given time. It’s like adjusting the lighting of a room until it’s just right for your mood.

But University at Buffalo researchers have shown that a considerable portion of a human’s roughly 20,000 genes express more like your standard light switch—fully on or fully off.

Scientists discover a materials maze that prevents bacterial infections

Scientists at the University of Nottingham have discovered surface patterns that can drastically reduce bacteria’s ability to multiply on plastics, which means that infections on medical devices, such as catheters, could be prevented.

The findings of the study, which are published in Nature Communications, show that when bacterial cells encounter patterned grooves on a surface, they lose their ability to form biofilms.

Biofilms are surface-associated slime-cities which help protect the bacteria from the body’s natural defenses against . This, in turn, means the infection is effectively prevented before it can become fully established and would also positively activate the immune system to get rid of any individual bacteria that were there.

/* */