Toggle light / dark theme

Preventing overhydration: Study uncovers a neural circuit that prompts mice to stop drinking

Identifying the neural mechanisms that support the regulation of vital physiological processes, such as drinking, eating and sleeping, is a long-standing goal within the neuroscience research community. As the disruption of these processes can severely impact people’s health and everyday functioning, uncovering their neural and biological underpinnings is of the utmost importance.

New insights gathered by neuroscientists could ultimately inform the development of more effective interventions designed to regulate vital physiological processes. Thirst and hunger are known to be regulated by homeostatic processes, biological processes that allow the body to maintain internal stability.

Yet behavior can also be anticipatory, which means that animals and humans often adjust their actions (i.e., stop drinking) before the concentration of substances in the blood changes in response to drinking water. The mechanisms through which the brain predicts when it is the right time to stop drinking remain poorly understood.

A continuous totipotent-like cell-based embryo model recapitulates mouse embryogenesis from zygotic genome activation to gastrulation

The authors identify a chemical cocktail to generate totipotent-like cells, which they then use to build an embryo model. This model captures a developmental spectrum from early embryogenesis to post-implantation events.

First bedrest samples arrive at exploration biobank in Portugal

ESA’s new Exploration Biobank received its first biological samples linked to European space research in Portugal this week.

The shipment contained over 1,400 human samples from the Vivaldi III bedrest and dry-immersion campaign that took place earlier this year at Medes space clinic in Toulouse, France. Vivaldi III had a group of volunteers lying down on a waterbed and another group in bedrest for 10 days to recreate some of the effects of spaceflight on the body.

Samples of blood, saliva, urine, stool and hair from the participants arrived at the Biobank of the Gulbenkian Institute for Molecular Medicine (GIMM) in Lisbon on 14 October following strict safety, traceability and conservation protocols.

Breakthrough: Scientists Create ‘Universal’ Kidney To Match Any Blood Type

After a decade of work, researchers are closer than ever to a key breakthrough in kidney organ transplants: being able to transfer kidneys from donors with different blood types than the recipients, which could significantly speed up waiting times and save lives.

A team from institutions across Canada and China has managed to create a ‘universal’ kidney, which can, in theory, be accepted by any patient.

Their test organ survived and functioned for several days in the body of a brain-dead recipient, whose family consented to the research.

New Alzheimer’s Treatment Clears Plaques From Brains of Mice Within Hours

Scientists have repaired a natural gateway into the brains of mice, allowing the clumps and tangles associated with Alzheimer’s disease to be swept away.

After just three drug injections, mice with certain genes that mimic Alzheimer’s showed a reversal of several key pathological features.

Within hours of the first injection, the animal brains showed a nearly 45 percent reduction in clumps of amyloid-beta plaques, a hallmark of Alzheimer’s disease.

Longevity gene from supercentenarians offers hope for disease that causes rapid aging in children

A new breakthrough in a rare genetic disease which causes children to age rapidly has been discovered using ‘longevity genes’ found in people who live exceptionally long lives—over 100 years old. The research, by the University of Bristol and IRCCS MultiMedica, found these genes which help keep the heart and blood vessels healthy during aging could reverse the damage caused by this life-limiting disease.

This is the first study, published in Signal Transduction and Targeted Therapy, to show that a gene from long-lived people can slow down heart aging in a model. Also known as Hutchinson-Gilford progeria syndrome (HGPS), progeria is a rare, fatal genetic condition of “rapid-aging” in children.

HGPS is caused by a mutation in the LMNA gene, which leads to the production of a toxic protein called progerin. Most affected individuals die in their teens due to heart problems, although a few, like Sammy Basso, the oldest known person with progeria, have lived longer. Sadly, late last year at the age of 28, Sammy passed away.

Bioelectronic-integrated artificial colon eliminates need for animal testing

Researchers at the University of California, Irvine have developed a 3D human colon model integrated with bioelectronics to aid in colorectal cancer research and drug discovery. The “3D in vivo mimicking human colon” enables precision, personalized medicine and offers a more ethical, accurate and cost-effective alternative to traditional animal testing.

In a paper published recently in the journal Advanced Science, researchers in UC Irvine’s Samueli School of Engineering outline their creation of an approximately 5-by-10-millimeter replica that incorporates essential structural features of a colon, including liminal curvature, multilayered cellular organization and the spontaneous formation of cryptlike indentations.

“The three-dimensional shapes, curves and crypts in our 3D-IVM-HC model are central to maintaining more realistic cell behavior even at a scaled-down size,” said senior author Rahim Esfandyar-pour, UC Irvine assistant professor of electrical engineering and computer science.

First major trial of AI in breast cancer screening launches in the USA

A study led by Sylvester Comprehensive Cancer Center, part of University of Miami Miller School of Medicine (FL, USA) seeks to understand how AI can improve breast cancer screening. The Pragmatic Randomized Trial of Artificial Intelligence for Screening Mammography (PRISM) trial will examine hundreds of thousands of mammograms to “assess AI’s true impact”

Despite huge investments in research, breast cancer remains a leading cause of mortality in US women. Routine mammography has increased the diagnosis of early-stage cancer, but the increased incidence of false positives can lead to unnecessary testing, anxiety and higher costs.

“As the first major randomized trial of AI in breast cancer screening in the US, this study represents a pivotal step,” commented Jose Net, University of Miami Miller School of Medicine and co-principal investigator of the study. “Our goal is to rigorously and objectively assess AI’s impact, identifying who benefits and who may not.”

/* */