Toggle light / dark theme

Dowload the pdf

Cannabis sativa, especially one high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been proposed to modulate gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. Working under the Health Canada research license, we have developed over 800 new Cannabis sativa lines and extracts and hypothesized that high-CBD C. sativa extracts may be used to modulate ACE2 expression in COVID-19 target tissues. Screening C. sativa extracts using artificial human 3D models of oral, airway, and intestinal tissues, we identified 13 high CBD C. sativa extracts that modulate ACE2 gene expression and ACE2 protein levels. Our initial data suggest that some C. sativa extract down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV2 entry into host cells.

While our most effective extracts require further large-scale validation, our study is crucial for the future analysis of the effects of medical cannabis on COVID-19. The extracts of our most successful and novel high CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the treatment of COVID-19 as an adjunct therapy. They can be used to develop easy-to-use preventative treatments in the form of mouthwash and throat gargle products for both clinical and at-home use. Such products ought to be tested for their potential to decrease viral entry via the oral mucosa. Given the current dire and rapidly evolving epidemiological situation, every possible therapeutic opportunity and avenue must be considered.


With the rapidly growing pandemic of COVID-19 caused by the new and challenging to treat zoonotic SARS-CoV2 coronavirus, there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. Inhibition of viral entry and thereby spread constitute plausible therapeutic avenues. Similar to other respiratory pathogens, SARS-CoV2 is transmitted through respiratory droplets, with potential for aerosol and contact spread. It uses receptor-mediated entry into the human host via angiotensin-converting enzyme II (ACE2) that is expressed in lung tissue, as well as oral and nasal mucosa, kidney, testes, and the gastrointestinal tract. Modulation of ACE2 levels in these gateway tissues may prove a plausible strategy for decreasing disease susceptibility. Cannabis sativa, especially one high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been proposed to modulate gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. Working under the Health Canada research license, we have developed over 800 new Cannabis sativa lines and extracts and hypothesized that high-CBD C. sativa extracts may be used to modulate ACE2 expression in COVID-19 target tissues. Screening C. sativa extracts using artificial human 3D models of oral, airway, and intestinal tissues, we identified 13 high CBD C. sativa extracts that modulate ACE2 gene expression and ACE2 protein levels. Our initial data suggest that some C. sativa extract down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV2 entry into host cells. While our most effective extracts require further large-scale validation, our study is crucial for the future analysis of the effects of medical cannabis on COVID-19. The extracts of our most successful and novel high CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the treatment of COVID-19 as an adjunct therapy. They can be used to develop easy-to-use preventative treatments in the form of mouthwash and throat gargle products for both clinical and at-home use. Such products ought to be tested for their potential to decrease viral entry via the oral mucosa. Given the current dire and rapidly evolving epidemiological situation, every possible therapeutic opportunity and avenue must be considered.

If you are interested in brain computer interfaces (BCI), then you need to listen to this very exciting podcast!

I have only been aware of this DARPA NNN (Next-generation Non-surgical Neurotechnology) program since mid-March, and it is my number one topic of interest. I am interested in it because I have a plan for mind uploading to extend my life indefinitely — otherwise known as superlongevity in our group — but I have no interest in allowing anyone to drill holes in my head! DARPA is looking at ways for non-invasive methods of connecting the thoughts in our brains to computers. Over time, this could be a method to capture the thoughts and memories and emotions within my mind and transfer them into a computer substrate. And, to be clear, this mind upload will, in fact, be me.

Naturally, DARPA is not developing this so that I can upload my mind. This is part of their wounded warrior project, where they are trying to rehabilitate soldiers who have had the misfortune to have lost a limb. In addition to the non-invasive neural technology, they are working on haptics to provide a feedback loop for the sense of touch and temperature. They are also working on what they describe as third wave AI to support this technology.

The interview is with Dr Al Emondi, who has had a fascinating career in technology. He is the DARPA program manager in the Biological Technologies department.

Roches Actemra failed to meet its primary and secondary endpoints in a late-stage study involving hospitalized patients with severe COVID-19 associated pneumonia. The drug also failed to hit a key secondary endpoint of reduced patient mortality.

Genentech, the South San Francisco-based Roche subsidiary, launched the Phase III COVACTA study of Actemra, a rheumatoid arthritis drug, in March for this indication. The COVACTA study marked the first global study of Actemra (tocilizumab) plus standard-of-care in this setting. Actemra is an IL-6 inhibitor. The IL-6 protein triggers the body’s immune and inflammatory response to fight infections. But, in the case of those patients where their immune system overreacts, such as in some COVID-19 patients, inhibiting IL-6 could keep the body from attacking itself.

This morning, Genentech announced that COVACTA did not meet its primary endpoint of improved clinical status in hospitalized adult patients with severe COVID-19 associated pneumonia. In addition, the key secondary endpoints, which included the difference in patient mortality at week four, were not met. However, there was a positive trend in time to hospital discharge in patients treated with Actemra, the company said. The median time to discharge for Actemra patients was 20 days, compared to 28 days for placebo patients. Genentech did say, however, that the difference cannot be considered statistically significant as the primary endpoint of the COVACTA study was not met.

When the Shewanella oneidensis bacterium “breathes” in certain metal and sulfur compounds anaerobically, the way an aerobic organism would process oxygen, it produces materials that could be used to enhance electronics, electrochemical energy storage, and drug-delivery devices.

The ability of this bacterium to produce molybdenum disulfide—a material that is able to transfer electrons easily, like graphene—is the focus of research published in Biointerphases by a team of engineers from Rensselaer Polytechnic Institute.

“This has some serious potential if we can understand this process and control aspects of how the bacteria are making these and other materials,” said Shayla Sawyer, an associate professor of electrical, computer, and systems engineering at Rensselaer.

Through a cross-species study of metformin, a common drug used to treat Type 2 diabetes, a team of researchers and clinicians from the Donnelly Center and The Hospital for Sick Children (SickKids) has shown that it could one day be possible to repair brain injury using resident cells in the brain.

“No one’s actually shown before that you can take a drug where there’s a known mechanism on endogenous stem cells and demonstrate that it’s even possible to induce and positive recovery,” says Donald Mabbott, Program Head and Senior Scientist in the Neurosciences & Mental Health program at SickKids, and co-author of a study published in Nature Medicine on July 27.

Mabbott says metformin is a potential game-changer in terms of how childhood brain injury is treated.

This sucks.


Per- and polyfluoroalkyl substances (PFAS), found in many household products and food packages, have raised concerns because of their persistence and possible toxicity to people and wildlife. Because the compounds don’t break down naturally, they have become environmental contaminants. Now, researchers reporting in Environmental Science & Technology have studied the transport of 29 PFAS into and out of the Arctic Ocean, detecting a newer compound for the first time in Arctic seawater.

After studies indicated that two PFAS—PFOA and PFOS—can cause cancer, a compromised immune response and other health problems in lab animals, the two compounds were voluntarily phased out by industry. However, these legacy compounds are still widely detected in the environment. Intended as a safer replacement for PFOA, HFPO-DA (sold under the trade name GenX) is now thought to pose similar health and persistence concerns. Hanna Joerss and colleagues wanted to investigate the long-range, oceanic transport of legacy and replacement PFAS to the Arctic Ocean—a remote body of water connected to the Atlantic Ocean by the Fram Strait, which is located between Svalbard and Greenland.

Aboard an icebreaker research ship, the team collected along two Fram Strait currents entering and exiting the Arctic Ocean and along a path from Europe’s North Sea to the Arctic Ocean. Using , the researchers detected 11 PFAS in the , including PFOA, HFPO-DA and other long- and short-chain PFAS. This was the first time that HFPO-DA had been detected in seawater from a remote region, indicating that the compound can be transported long distances. Higher levels of PFAS were detected in the water exiting the Arctic Ocean compared with the water entering the Arctic from the North Atlantic. The PFAS composition in the outgoing water suggested that more of these compounds arose from atmospheric sources than from ocean circulation.

Summary: First responders at the World Trade Center have reduced cortical gray matter thickness, which was consistent with neurodegenerative conditions and evidence their brain age is, on average, ten years older than those of similar ages in the general population.

Source: Stony Brook University

Two studies led by Stony Brook University researchers to be presented virtually at the Alzheimer’s Association International Conference on July 28, 2020, indicate that World Trade Center (WTC) first responders are at risk for developing dementia. The studies included individuals with signs of cognitive impairment (CI) who show neuroradiological abnormalities and changes in their blood similar to that seen in Alzheimer’s disease patients and those with related dementias.

AMID rising global numbers of daily coronavirus infections, a fresh flush of vaccine trial results is offering hope for the longer run.

There are more than 160 coronavirus vaccines in development around the world. About 140 of these are at the preclinical stage, meaning they are still being looked at in laboratories and in animal tests. Another 25 are already being tested in people.

Okay now this vaccine thing is just comedy:

Russia intends to be the first in the world to approve a coronavirus vaccine, in less than two weeks — despite concerns about its safety, effectiveness and over whether the country has cut essential corners in development, CNN has learned.


CNN News, delivered. Select from our newsletters below and enter your email to subscribe.