Toggle light / dark theme

An Israeli company said Wednesday that it received European approval for its rapid coronavirus test and it was poised to help kickstart international travel.

The handheld SpectraLIT machine eliminates the need for complex lab equipment by shining light through samples and giving immediate results using the spectral signature.

This means that staff in airport booths who are currently tasked with collecting test samples and dispatching them to labs will simply have a machine at hand and be able to give passengers results after just 20 seconds of analysis.

A $2 million federal grant will enable Houston-based PolyVascular to launch human trials of what it hails as the first polymer-based heart valve for children.

In conjunction with the grant, Dr. Will Clifton has joined the medical device company as chief operating officer. He will oversee the grant as principal investigator, and will manage the company’s operations and R&D. Clifton is president and co-founder of Houston-based Enventure, a medical innovation incubator and education hub. He previously was senior director of medical affairs at Houston-based Procyrion, a clinical-stage medical device company.

PolyVascular’s Phase II grant came from the Small Business Innovation Research (SBIR) program, which promotes technological projects.

Dr Joan Mannick, Head of Research and Development at Life Biosciences, discusses the #geroscience approach in disease treatment and the exciting work being done at Life Biosciences.


#Ageing is the greatest risk factor for almost every chronic disease. Multiple studies have shown that ageing is a modifiable risk factor that can be targeted therapeutically.

In this week’s #HealthyLongevity #webinar session, Dr Joan Mannick, Head of Research and Development at Life Biosciences, discusses the #geroscience approach in disease treatment and the exciting work being done at Life Biosciences.

Register for the upcoming webinar sessions here: https://nus-sg.zoom.us/webinar/register/1816140491076/WN_ym1bHff2RwW1XI9jIwdXCA

#NUSMedicine #webinarseries

Buck Institute researchers have discovered and are developing a novel, non-invasive biomarker test that can be used to measure and track performance of senolytics: a class of drugs that selectively eliminate senescent cells. The discovery is expected to play a major role in efforts to develop treatments that would battle a myriad of chronic age-related conditions that range from arthritis to lung disease to Alzheimer’s disease and glaucoma. This biomarker is a unique signaling lipid metabolite, normally exclusively intracellular, but is released when senescent cells are forced to die. This metabolite is detectible in blood and urine, making non-invasive testing possible. With a growing list of senolytic drugs in development, detecting this metabolite via a companion test could verify performance of senolytic candidates.

“The list of age-related diseases definitively linked to cellular keeps growing, as does the number of biotech companies racing to develop drugs to eliminate senescent ,” said Buck professor Judith Campisi, Ph.D., senior scientist on the study. “While the field has never been more promising, the lack of a simple biomarker to measure and track efficacy of these treatments has been a hindrance to progress. We are excited to bring this new biomarker to the field and look forward to it being used in the clinic.”

People into aging/longevity research probably know all of what’s here already.


Aubrey de Grey has been the leading voice for antiaging, aging reversal and aging damage repair for over twenty years. He founded the SENS non-profit (Strategies for Engineered Negligible Senescence (SENS). There have been six antiaging companies that have been directly spun out of SENS is researching the hardest problems related to fixing aging damage.

Repairing damage in five of the areas of aging are now highly active areas of biotech research.

SENS has helped fund lab work to show that mitochondrial mutations and loss of elasticity in the extracellular matrix can be repaired. SENS is now helping to pioneer combination antiaging therapies.

“Last year’s stimulus was about keeping the economy going, but these companies didn’t use these resources to retain their workers. These are companies that are polluting the environment, increasing the deadliness of the pandemic and letting go of their workers.”


Figures show 77 companies received $8.2bn under tax changes related to Covid relief and yet almost every one let workers go.

The results of this study confirm a direct link, on a molecular level, between the gut microbiome and brain function.


Summary: Consuming high levels of sugar-sweetened beverages early in life may lead to memory problems during adulthood. Researchers found, compared to rats who consumed only water, those who drank sugar-sweetened beverages had difficulties in memory recall associated with the hippocampus. The study also found a link between specific changes in gut bacteria in rats who drank sugary drinks and impaired brain function.

Source: USC

New research shows how drinking sugary beverages early in life may lead to impaired memory in adulthood.

The study, published today in Translational Psychiatry, also is the first to show how a specific change to the gut microbiome — the bacteria and other microorganisms growing in the stomach and intestines — can alter the function of a particular region of the brain.

Bipolar disorder affects millions of Americans, causing dramatic swings in mood and, in some people, additional effects such as memory problems.

While bipolar disorder is linked to many genes, each one making small contributions to the disease, scientists don’t know just how those genes ultimately give rise to the disorder’s effects.

However, in new research, scientists at the University of Wisconsin-Madison have found for the first time that disruptions to a particular protein called Akt can lead to the brain changes characteristic of bipolar disorder. The results offer a foundation for research into treating the often-overlooked cognitive impairments of bipolar disorder, such as memory loss, and add to a growing understanding of how the biochemistry of the brain affects health and disease.

A new, detailed model of the surface of the SARS-CoV-2 spike protein reveals previously unknown vulnerabilities that could inform development of vaccines. Mateusz Sikora of the Max Planck Institute of Biophysics in Frankfurt, Germany, and colleagues present these findings in the open-access journal PLOS Computational Biology.

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. A key feature of SARS-CoV-2 is its spike , which extends from its and enables it to target and infect human cells. Extensive research has resulted in detailed static models of the spike protein, but these models do not capture the flexibility of the spike protein itself nor the movements of protective glycans—chains of sugar molecules—that coat it.

To support vaccine development, Sikora and colleagues aimed to identify novel potential target sites on the surface of the spike protein. To do so, they developed that capture the complete structure of the spike protein and its motions in a realistic environment.