Toggle light / dark theme

When one mentions the topic of “head transplantation” (or a related topic – the “brain transplant”), for most people, it remains a topic purely in the context and sphere of science fiction.

Yet most people are unaware of the following history:

In 1908, Nobel Prize winner Alexis Carrel, a French surgeon who had developed surgical methods to connect blood vessels in the context of organ transplantation, collaborated with the American Charles Claude Guthrie perform the first head grafts between dogs.

In 1954, Vladimir Demikhov, a Soviet surgeon who conducted important work to improve coronary bypass surgery, performed experiments in which he grafted a dog’s head and upper body, onto another dog; the effort was focused on how to provide blood supply to the donor head and upper body.

From the COVID-19 vaccine to advances in machine learning, AI, improved W-Fi and 5G, and telemedicine, experts expect a move to “patient-centric” health next year.

COVID-19 accomplished what entrepreneurs, doctors, and activists couldn’t: Designing a healthcare system that works for patients instead of providers and health insurance companies.

The industry promised to be “patient-centered” for the last decade but only the harsh demands of COVID-19 have made this a reality. As Ian McCrae, CEO of Orion Health, described it, COVID-19 is ushering in the long-overdue transformation of the healthcare system and, finally, a move to “patient-centric” health.

Andres de Tenyi.


Yuri Deigin, MBA is a serial biotech entrepreneur, longevity research evangelist and activist, and a cryonics advocate. He is an expert in drug development and venture investments in biotechnology and pharmaceuticals. He is the CEO at Youthereum Genetics and the Vice President at Science for Life Extension Research Support Foundation.
http://youthereum.ca/

Yuri has a track record of not only raising over $20 million for his previous ventures but also initiating and overseeing 4 clinical trials and several preclinical studies, including studies in transgenic mice.

I just read an incredible post about Transhumanism by Francesco Neo Amati, CM of Transhumanism: The Future of Humanity.

What an excellent representation of how pragmatic and collaborative our community can be. People like Francesco Neo Amati are the reason why I call myself a Transhumanist…

“Community Announcement:

The following will address the purpose of our community as outlined in the Pinned Post and to dispel common misconceptions of Transhumanism by clarifying what it is and what it isn’t.

I have no desire in being a ‘leader’ in the Transhumanism community. I merely hope to be and remain a credible educator/resource, passionate advocate, and a voice of reason for the movement.

Takeaways * Scientists have made progress growing human liver in the lab. * The challenge has been to direct stems cells to grow into a mature, functioning adult organ. * This study shows that stem cells can be programmed, using genetic engineering, to grow from immature cells into mature tissue. * When a tiny lab-grown liver was transplanted into mice with liver disease, it extended the lives of the sick animals.* * *Imagine if researchers could program stem cells, which have the potential to grow into all cell types in the body, so that they could generate an entire human organ. This would allow scientists to manufacture tissues for testing drugs and reduce the demand for transplant organs by having new ones grown directly from a patient’s cells. I’m a researcher working in this new field – called synthetic biology – focused on creating new biological parts and redesigning existing biological systems. In a new paper, my colleagues and I showed progress in one of the key challenges with lab-grown organs – figuring out the genes necessary to produce the variety of mature cells needed to construct a functioning liver. Induced pluripotent stem cells, a subgroup of stem cells, are capable of producing cells that can build entire organs in the human body. But they can do this job only if they receive the right quantity of growth signals at the right time from their environment. If this happens, they eventually give rise to different cell types that can assemble and mature in the form of human organs and tissues. The tissues researchers generate from pluripotent stem cells can provide a unique source for personalized medicine from transplantation to novel drug discovery. But unfortunately, synthetic tissues from stem cells are not always suitable for transplant or drug testing because they contain unwanted cells from other tissues, or lack the tissue maturity and a complete network of blood vessels necessary for bringing oxygen and nutrients needed to nurture an organ. That is why having a framework to assess whether these lab-grown cells and tissues are doing their job, and how to make them more like human organs, is critical. Inspired by this challenge, I was determined to establish a synthetic biology method to read and write, or program, tissue development. I am trying to do this using the genetic language of stem cells, similar to what is used by nature to form human organs. Tissues and organs made by genetic designsI am a researcher specializing in synthetic biology and biological engineering at the Pittsburgh Liver Research Center and McGowan Institute for Regenerative Medicine, where the goals are to use engineering approaches to analyze and build novel biological systems and solve human health problems. My lab combines synthetic biology and regenerative medicine in a new field that strives to replace, regrow or repair diseased organs or tissues. I chose to focus on growing new human livers because this organ is vital for controlling most levels of chemicals – like proteins or sugar – in the blood. The liver also breaks down harmful chemicals and metabolizes many drugs in our body. But the liver tissue is also vulnerable and can be damaged and destroyed by many diseases, such as hepatitis or fatty liver disease. There is a shortage of donor organs, which limits liver transplantation. To make synthetic organs and tissues, scientists need to be able to control stem cells so that they can form into different types of cells, such as liver cells and blood vessel cells. The goal is to mature these stem cells into miniorgans, or organoids, containing blood vessels and the correct adult cell types that would be found in a natural organ. One way to orchestrate maturation of synthetic tissues is to determine the list of genes needed to induce a group of stem cells to grow, mature and evolve into a complete and functioning organ. To derive this list I worked with Patrick Cahan and Samira Kiani to first use computational analysis to identify genes involved in transforming a group of stem cells into a mature functioning liver. Then our team led by two of my students – Jeremy Velazquez and Ryan LeGraw – used genetic engineering to alter specific genes we had identified and used them to help build and mature human liver tissues from stem cells. The tissue is grown from a layer of genetically engineered stem cells in a petri dish. The function of genetic programs together with nutrients is to orchestrate formation of liver organoids over the course of 15 to 17 days. Liver in a dishI and my colleagues first compared the active genes in fetal liver organoids we had grown in the lab with those in adult human livers using a computational analysis to get a list of genes needed for driving fetal liver organoids to mature into adult organs. We then used genetic engineering to tweak genes – and the resulting proteins – that the stem cells needed to mature further toward an adult liver. In the course of about 17 days we generated tiny – several millimeters in width – but more mature liver tissues with a range of cells typically found in livers in the third trimester of human pregnancies. Like a mature human liver, these synthetic livers were able to store, synthesize and metabolize nutrients. Though our lab-grown livers were small, we are hopeful that we can scale them up in the future. While they share many similar features with adult livers, they aren’t perfect and our team still has work to do. For example, we still need to improve the capacity of the liver tissue to metabolize a variety of drugs. We also need to make it safer and more efficacious for eventual application in humans.[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]Our study demonstrates the ability of these lab livers to mature and develop a functional network of blood vessels in just two and a half weeks. We believe this approach can pave the path for the manufacture of other organs with vasculature via genetic programming. The liver organoids provide several key features of an adult human liver such as production of key blood proteins and regulation of bile – a chemical important for digestion of food. When we implanted the lab-grown liver tissues into mice suffering from liver disease, it increased the life span. We named our organoids “designer organoids,” as they are generated via a genetic design. This article is republished from The Conversation, a nonprofit news site dedicated to sharing ideas from academic experts. It was written by: Mo Ebrahimkhani, University of Pittsburgh. Read more: * Brain organoids help neuroscientists understand brain development, but aren’t perfect matches for real brains * Why are scientists trying to manufacture organs in space?Mo Ebrahimkhani receives funding from National Institute of Health, University of Pittsburgh and Arizona Biomedical Research Council.

This month, a collaboration between NASA and various research institutions pinpointed a “central biological hub” that controls health during space travel. The culprit is the cell’s energy factory, the mitochondria, which breaks down in function in a way eerily similar to aging. Like shutting down power and water in a city, disruptions to the mitochondria reverberate throughout the cells and organs, potentially leading to problems with sleeping, the immune system, and more in space. The results were [published in *Cell](https://www.cell.com/cell/fulltext/S0092-8674(20)31461-6).*

Microsoft Health-Tech Vision


Dr. James Weinstein, is Senior Vice President, Microsoft Healthcare, where he is in charge of leading strategy, innovation and health equity functions.

Prior to Microsoft, Dr. Weinstein was president and CEO of Dartmouth-Hitchcock Health, a $2.0 billion academic medical center in Northern New England, where he led the organization to adopt a population health model, including the transition from fee-for-service toward global payments.

If you want to live long enough to see a reversal of aging and everlasting youth, exercise should be at the core of your routine.

Here I look at ten amazing benefits that exercise brings to your body and mind, so if you haven’t already got a regime on the go, hopefully this will convince you to start now.

Have an amazing day 🙂