Toggle light / dark theme

The future of desalination? A fast, efficient, selective membrane for purifying saltwater

Water scarcity is a growing problem around the world. Desalination of seawater is an established method to produce drinkable water but comes with huge energy costs. For the first time, researchers use fluorine-based nanostructures to successfully filter salt from water. Compared to current desalination methods, these fluorous nanochannels work faster, require less pressure and less energy, and are a more effective filter.

If you’ve ever cooked with a nonstick Teflon-coated frying pan, then you’ve probably seen the way that wet ingredients slide around it easily. This happens because the key component of Teflon is fluorine, a lightweight element that is naturally repelling, or hydrophobic. Teflon can also be used to line pipes to improve the flow of water. Such behavior caught the attention of Associate Professor Yoshimitsu Itoh from the Department of Chemistry and Biotechnology at the University of Tokyo and his team. It inspired them to explore how pipes or channels made from fluorine might operate on a very different scale, the nanoscale.

“We were curious to see how effective a fluorous nanochannel might be at selectively filtering different compounds, in particular, water and salt. And, after running some complex computer simulations, we decided it was worth the time and effort to create a working sample,” said Itoh. “There are two main ways to desalinate water currently: thermally, using heat to evaporate seawater so it condenses as pure water, or by , which uses pressure to force water through a that blocks salt. Both methods require a lot of energy, but our tests suggest fluorous nanochannels require little energy, and have other benefits too.”

J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces

Foresight Molecular Machines Group.
Program & apply to join: https://foresight.org/molecular-machines/

Joe Lyding.
Silicon-Based Nanotechnology: There’s Still Plenty of Room at the Bottom.
Joe Lyding is a distinguished professor in Electrical and Computer Engineering at the University of Illinios. His career includes constructing the first atomic resolution scanning tunneling microscope, discovering new industrial uses for deuterium, studying quantum size effects down to 2nm lateral graphene dimensions, and much more. His current research is focused on carbon nanoelectronics. Specifically using carbon nanoelectronics based on carbon nanotubes and graphene for future semiconducting device applications.

Leonhard Grill.
Every Atom Counts: Manipulating Single Molecules on Surfaces.
Leonhard Grill is a professor at the University of Graz, where he leads a research group on nanoscience. His research focuses on imaging, characterization and manipulation of single functional molecules adsorbed on surfaces by using scanning tunneling microscopy, typically at cryogenic temperatures and under ultrahigh vacuum conditions.

Join us:
► Twitter: https://twitter.com/foresightinst.
► Facebook: https://www.facebook.com/foresightinst.
► Instagram: https://www.instagram.com/existentialhope/
► LinkedIn: https://www.linkedin.com/company/foresight-institute.

If you enjoy what we do please support us via Patreon: https://www.patreon.com/foresightinstitute.
If you’re interested in joining these meetings consider donating through our donation page: https://foresight.org/donate/

Foresight Institute advances technologies for the long-term future of life, focusing on molecular machine nanotechnology, biotechnology, and computer science.

Experimental Gene Therapy Increases Lifespan Of Mice By 41 Percent In Telomere Lengthening Study

Telomeres are “caps” of non-coding DNA sequences present at both tips of our chromosomes, which are extremely important in the aging process. These caps protect our DNA as cells go through various life cycles of replication, however, each time a cell divides these telomeres are shortened and eventually contribute to disease and cellular aging.

Now, exciting new research published in the Journal PNAS has shown that an experimental gene therapy could be used to halt the shortening of these telomere caps in mice and by doing so increase the life span of these animals by up to 41 percent compared to controls.

Telomere length can be considered a marker of biological age and its shortening is a hallmark of a process called cellular senescence, which limits the replication of DNA in old damaged cells. As we age, telomere caps become shorter and shorter until the cell’s DNA becomes vulnerable to damage by cellular stresses that could lead to diseases such as cancer. Or the cell could ultimately reach senescence where it will no longer be able to replicate and so contribute to the aging process. For scientists looking at how to slow or even reverse aging, telomeres are of great interest.

Scientists just brought light-sensing cells in human eyes back to life

Death may be the most uncanny topic to discuss for human beings. Even thinking about it is uncomfortable for some people.

To eliminate the mystery behind it, researchers worldwide are conducting scientific studies on death and coming up with surprising results, such as when researchers captured brainwaves during an individual’s death and found semblance to high cognition activities.

And now, a team of scientists from the U.S. may have found a way to revive a glimmer of activity in human eyes after death. According to a study published yesterday (May 11, 2022) in the journal Nature, the team has managed to revive the connections between light-sensing neurons in organ donor eyes.

With chromosome find, Israelis open possible new path to fight infertility

Israeli scientists say they have opened a possible new path to fighting infertility, by identifying a mechanism that seems to harm eggs when it malfunctions.

In peer-reviewed research published on Thursday in the journal Science, a team of Hebrew University researchers outline a mechanism they identified in studies of zebrafish and mice.

They say it plays a key role in ensuring that chromosomes inside eggs are organized correctly, so that they can be fertilized and produce healthy offspring.

Learn about the Science that could one day overcome age related diseases

Learn More


Here at Lifespan.io, we publish fact-checked news and deep interviews with aging researchers to help people track the development of treatments targeting aging. These treatments aim at preventing and curing age-related diseases and may improve lives of thousands of people around the globe!

Everyone deserves to know about the emerging opportunities in the field of healthy life extension research. Knowledge is empowering. In our articles and popular science videos, we discuss the progress, pros, cons, and social implications of innovative medicine for controlling aging, and the steps that are needed to accelerate its clinical implementation.

How your giving made a difference in 6 years


Research on aging and life extension can allow people to be healthier for longer, and with your help, we can reach out to more people! Please consider supporting our work with a monthly donation!

Scientists Suggest Editing Human Genetic Code to Prevent Heart Attacks

Heart attacks are the world’s leading cause of death, yet the few treatments available are often expensive and inaccessible. Although that’s been the case for years, the World Health Organization warned back in 2020 heart disease numbers were still on the rise.

Verve Therapeutics says altering human genomes to prevent the buildup of bad cholesterol might be the answer, and is creating what CEO Sekar Kathiresan says may be a permanent solution to heart disease. The company is backed by Google Ventures, according to a report about the breakthrough published Friday in Bloomberg. Verve also counts a Harvard medical professor and an award-winning medical expert among its cofounders.

“We’re on the cusp of potentially transforming that model to a one-and-done treatment,” Kathiresan told the business publication.

Using an Endemic Virus as a Gene Therapy for Life Extension

In a study printed in PNAS, researchers have shown that telomerase reverse transcriptase (TERT) can be given to cells in living mice through a viral vector, taking the idea of life-extending gene therapies from science fiction to reality.

Why a cytomegalovirus?

The human cytomegalovirus (CMV) is widely known as an endemic virus that, while usually asymptomatic, is known to cause with harmful effects in babies and older adults. However, some of its properties make this virus suitable for delivering gene therapies. As cytomegaloviruses can carry large genetic payloads and don’t overwrite the DNA of their host cells [1], replacing the genes of these viruses with beneficial DNA may be safer than approaches with more potential off-target effects; development in this area is ongoing, and a phase 1 human clinical trial has already been conducted [2].

/* */