“Endometriosis very likely isn’t one disease.” Studies like this help researchers understand the complex disease and how to treat it, she says.
Advance offers potential nonhormonal way to treat mysterious, complex disease.
“Endometriosis very likely isn’t one disease.” Studies like this help researchers understand the complex disease and how to treat it, she says.
Advance offers potential nonhormonal way to treat mysterious, complex disease.
Posted in biotech/medical, government
The mRNA vaccine success story is one of the few positives to emerge from COVID-19. But these vaccines from Moderna and Pfizer/BioNTech are only the tip of the iceberg in the coming RNA medical technology revolution.
Australia, including our newly established UNSW RNA Institute, is well-placed to take a leading role in this revolution. With its eyes firmly set on making NSW a global force in the RNA industry, the NSW Government is backing a new RNA Bioscience Alliance between all the NSW Universities as well as funding a $15 million RNA production network between some of the state’s leading research organizations to bootstrap pre-clinical RNA research. UNSW’s RNA Institute is a key part of this drive, and with a $25 million investment brings together world-leading expertise to support the state and national agenda.
So beyond mRNA vaccines, what are these RNA therapeutics on the horizon? And what is the secret sauce that finally got mRNA vaccines to work after many years of trying? To understand this, let’s first tackle what RNA is and how it is used in medicine.
“These data suggest that differences in the microbiota following antibiotics in early life can reprogram the immune system long-term, with the consequences of this reprogramming emerging later in life, including effects on immunity, metabolism and even lifespan,” Prof Lynn said.
A team of researchers from SAHMRI and Flinders University has found a link between the type of microbiome that repopulates the gut following antibiotics and shortened lifespan in mice.
The world of lab-grown meats is fast filling with all kinds of tasty bites, from burgers, to chicken breasts, to a series of increasingly complex cuts of steak. Expanding the scope of cultured beef are scientists from Japan’s Osaka University, who have leveraged cutting-edge bioprinting techniques to produce the first lab-grown “beef” that resembles the marbled texture of the country’s famed Wagyu cows.
From humble beginnings that resembled soggy pork back in 2,009 to the classic steaks and rib-eyes we’ve seen pop up in the last few years, lab-grown meat has come along in leaps and bounds. The most sophisticated examples use bioprinting to “print” living cells, which are nurtured to grow and differentiate into different cell types, ultimately building up into the tissues of the desired animal.
The Osaka University team used two types of stem cells harvested from Wagyu cows as their starting point, bovine satellite cells and adipose-derived stem cells. These cells were incubated and coaxed into becoming the different cell types needed to form individual fibers for muscle, fat and blood vessels. These were then arranged into a 3D stack to resemble the high intramuscular fat content of Wagyu, better known as marbling, or sashi in Japan.
Secretome Derived Regenerative Therapeutics — Dr. Hanadie Yousef Ph.D., Co-Founder & CEO, Juvena Therapeutics
Dr. Hanadie Yousef, Ph.D. is a Scientist, Co-Founder and CEO of Juvena Therapeutics (https://www.juvenatherapeutics.com/), a regenerative medicine company developing protein therapeutics to promote tissue regeneration and increase healthspan, to prevent, reverse, and cure degenerative diseases.
For over 17 years, Dr. Yousef elucidated mechanisms of aging and developed methods for tissue regeneration supported by multiple awards, fellowships and grants. Her discoveries were published in top publications that include Nature Medicine and led to several issued patents which laid the foundation of Juvena Therapeutics’ venture-backed, drug discovery and pre-clinical development platform.
Dr. Yousef earned a BS in Chemistry, summa cum laude, from Carnegie Mellon University, a PhD in Molecular and Cell Biology from UC Berkeley as an NSF graduate research fellow, pursued a 5-year postdoctoral fellowship in Neurology at Stanford School of Medicine, and conducted R&D at Regeneron and Genentech.
Research indicates that flavonoids may protect against: high blood pressureTrusted Source heart attack and stroke type 2 diabetesTrusted Source certain types of cancer-medicalnewstoday.com
New research finds that people who consume foods high in flavonoids, such as berries, apples, and pears, have lower blood pressure than those who do not.
Okay, maybe not as big as the one in the picture.
Potatoes are my favorite vegetable; you can turn them into fries, bake them for an exquisite dish or mash them and eat them as a side dish. There are endless possibilities to cook a potato and what can be better than adding human fat gene in them to make them bigger and juicier?
Scientists have been experimenting with growing larger crops and it seems like they found the perfect solution; adding the human gene related to obesity and fat mass into the plants to yield super crops. The potato plants were inserted with a fat-regulating protein called FTO which changed the genetic code into producing extra proteins which resulted in large potatoes that were almost twice the size of regular ones grown from the same plant crop. “It [was] really a bold and bizarre idea. To be honest, we were probably expecting some catastrophic effects,” said Chuan He, a chemist at University of Chicago.
Longevity expert Sergey Young has spent his career gathering insights from health researchers, doctors and dietitians about how to live a longer and stronger life. He shares his top health rules, including his diet, exercise routine and how much sleep he gets.
ABOVE: MAPT, one of the genes linked to both heavy drinking and neurodegenerative diseases, codes for the protein tau (blue in this illustration) inside a neuron. NATIONAL INSTITUTE ON AGING/ NATIONAL INSTITUTES OF HEALTH
Some genetic risk factors for alcohol use disorder overlap with those for neurodegenerative diseases like Alzheimer’s, scientists reported in Nature Communications on August 20. The study, which relied on a combination of genetic, transcriptomic, and epigenetic data, also offers insight into the molecular commonalities among these disorders, and their connections to immune disfunction.
“By meshing findings from genome wide association studies… ith gene expression in brain and other tissues, this new study has prioritized genes likely to harbor regulatory variants influencing risk of Alcohol Use Disorder,” writes David Goldman, a neurogenetics researcher at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), in an email to The Scientist. “Several of these genes are also associated with neurodegenerative disorders—an intriguing connection because of alcohol’s ability to prematurely age the brain.”
Pico technology is hypothetical future level of technology which will revolutionized the scientist world. This technology is combination of pico and meter with scale of trillionths of a meter (10−12). This atomic and subatomic range particles reveals extraordinary properties and pave the way for tremendous applications [1].
The way lengths and angles attach together is the main determine of the materials properties. Alterable or reversible bonds distortions at pico-meter scale which changes the electronic conformation causes multiple properties for materials.
On the other hand, pico-scale particles changes the material properties by converting energy state of electrons within an atom. Physical and chemical properties of systems such as melting point, fluorescence, electrical conductivity, magnetic permeability, and chemical reactivity changes basically at pico-scale due to quantum effects of materials [2]. Moreover, surface energy of atoms increases by alternation of electron distribution and therefore, enhances protein and molecules adsorption on to materials. This privileges will resulting in tracing proteins, DNA and molecules and labeling them for various purpose.