Toggle light / dark theme

Circa 2020


Robots and stranger machines have been using a particular band of ultraviolet light to sterilize surfaces that might be contaminated with coronavirus. Those that must decontaminate large spaces, such as hospital rooms or aircraft cabins, use large, power-hungry mercury lamps to produce ultraviolet-C light. Companies around the world are working to improve the abilities of UV-C producing LEDs, to offer a more compact and efficient alternative. Earlier this month, Seoul Viosys showed what it says is the first 99.9 percent sterilization of SARS-COV-2, the coronavirus that causes COVID-19, using ultraviolet LEDs.

UV LEDs are deadly to viruses and bacteria, because the 100–280 nanometer wavelength C-band shreds genetic material. Unfortunately, it’s also strongly absorbed by nitrogen in the air, so sources have to be powerful to have an effect at a distance. (Air is such a strong barrier, that the sun’s UV-C doesn’t reach the Earth’s surface.) Working with researchers at Korea University, in Seoul, the company showed that its Violed LED modules could eliminate 99.9 percent of the SARS-COV-2 virus using a 30-second dose from a distance of three centimeters.

Unfortunately, the company did not disclose how many of its LEDs were used to achieve that. Assuming that it and the university researchers used a single Violed CMD-FSC-CO1A integrated LED module, a 30-second dose would have delivered at most 600 millijoules of energy. This is somewhat in-line with expectations. A study of UVC’s ability to kill influenza A viruses on N95 respirator masks indicated that about 1 joule per square centimeter would do the job.

The dirt scattered across the floor of an ancient, remote cave in Mexico has yielded a new source of viable ancient DNA.

For the first time, scientists have sequenced ancient DNA from soil samples — and it’s all thanks to the Upper Paleolithic bears that prolifically used the cave as their toilet around 16000 years ago.

The scientists describe their work as “the Moon landing of genomics”, as the breakthrough means fossilized remains are no longer the only way of obtaining ancient DNA. Further, it shows ancient DNA can now be studied in the context of populations, rather than scattered, fragmentary individuals.

The mRNA technology at the heart of two Covid-19 shots has been decades in the making. Now it may soon be used to fight cancer and HIV.

#Prognosis #Vaccine #BloombergQuicktake.

——-
Like this video? Subscribe: https://www.youtube.com/Bloomberg?sub_confirmation=1
Become a Quicktake Member for exclusive perks: https://www.youtube.com/bloomberg/join.

QuickTake Originals is Bloomberg’s official premium video channel. We bring you insights and analysis from business, science, and technology experts who are shaping our future. We’re home to Hello World, Giant Leap, Storylines, and the series powering CityLab, Bloomberg Businessweek, Bloomberg Green, and much more.

As the electronic health record grows in detail, the possibilities for customized care are becoming a reality. This article features some useful links to things in the making.


Illustrated woman. While AI is driving value in all aspects of our lives, there are times where it’s hard to separate the aspirations of those who want to use it to do good from those leverag ing AI today to positively impact real change in health and medici ne.

I have the privilege of working with many talented leaders and organizations that are truly making health and medical services better by harnessing the power of healthcare’s data tsunami using AI and other analytical solutions.

COVID-19, p art t wo

Summary: Boosting the expression of the ABCC1 gene may not only reduce amyloid plaques in the brain, it might also delay the onset of Alzheimer’s disease.

Source: TGen.

Findings of a study by the Translational Genomics Research Institute (TGen), an affiliate of City of Hope, suggest that increasing expression of a gene known as ABCC1 could not only reduce the deposition of a hard plaque in the brain that leads to Alzheimer’s disease, but might also prevent or delay this memory-robbing disease from developing.

Someday, scientists believe, tiny DNA-based robots and other nanodevices will deliver medicine inside our bodies, detect the presence of deadly pathogens, and help manufacture increasingly smaller electronics.

Researchers took a big step toward that future by developing a new tool that can design much more complex DNA robots and nanodevices than were ever possible before in a fraction of the time.

In a paper published today in the journal Nature Materials, researchers from The Ohio State University—led by former engineering doctoral student Chao-Min Huang—unveiled new software they call MagicDNA.

In a research paper published in Nature Aging, the team reports using a novel approach to provide the first data-driven classification of multiple diseases obtained using human genetic and medical data freely available from the UK Biobank.

Co-author Professor Linda Partridge (UCL Institute of Health Aging and Max Planck Institute for Biology of Aging) said: Advancing age is the main risk for major diseases, including cancer, dementia, and . Understanding the molecular links between the aging process and age-related diseases could allow them to be targeted with drugs to improve late-life health.

The striking finding from the study was that diseases with a similar age of onset were genetically more similar to each other than they were to diseases in the other three clusters.

CRISPR: Can we control it?
Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Learn skills from the world’s top minds at Big Think Edge: https://bigth.ink/Edge.
———————————————————————————
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a revolutionary technology that gives scientists the ability to alter DNA. On the one hand, this tool could mean the elimination of certain diseases. On the other, there are concerns (both ethical and practical) about its misuse and the yet-unknown consequences of such experimentation.

“The technique could be misused in horrible ways,” says counter-terrorism expert Richard A. Clarke lists biological weapons as one of the potential threats, “Threats for which we don’t have any known antidote.” CRISPR co-inventor, biochemist Jennifer Doudna, echos the concern, recounting a nightmare involving the technology, eugenics, and a meeting with Adolf Hitler.

Should humanity even have access to this type of tool? Do the positives outweigh the potential dangers? How could something like this ever be regulated, and should it be? These questions and more are considered by Doudna, Clarke, evolutionary biologist Richard Dawkins, psychologist Steven Pinker, and physician Siddhartha Mukherjee.
———————————————————————————
TRANSCRIPT:

0:41 Jennifer Doudna defines CRISPR