Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1458

Jun 19, 2020

Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept

Posted by in categories: biotech/medical, engineering

Circa 2016


Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood –synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.

Keywords: Synthetic plasma, biomedical science, human body.

Continue reading “Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept” »

Jun 19, 2020

Human brain size gene triggers bigger brain in monkeys

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

The expansion of the human brain during evolution, specifically of the neocortex, is linked to cognitive abilities such as reasoning and language. A certain gene called ARHGAP11B that is only found in humans triggers brain stem cells to form more stem cells, a prerequisite for a bigger brain. Past studies have shown that ARHGAP11B, when expressed in mice and ferrets to unphysiologically high levels, causes an expanded neocortex, but its relevance for primate evolution has been unclear.

Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, together with colleagues at the Central Institute for Experimental Animals (CIEA) in Kawasaki and the Keio University in Tokyo, both located in Japan, now show that this human-specific gene, when expressed to physiological levels, causes an enlarged in the common marmoset, a New World monkey. This suggests that the ARHGAP11B gene may have caused neocortex expansion during human evolution. The researchers published their findings in the journal Science.

The human neocortex, the evolutionarily youngest part of the cerebral cortex, is about three times bigger than that of the closest human relatives, chimpanzees, and its folding into wrinkles increased during evolution to fit inside the restricted space of the skull. A key question for scientists is how the human neocortex became so big. In a 2015 study, the research group of Wieland Huttner, a founding director of the MPI-CBG, found that under the influence of the human-specific gene ARHGAP11B, mouse embryos produced many more neural progenitor cells and could even undergo folding of their normally unfolded neocortex. The results suggested that the gene ARHGAP11B plays a key role in the evolutionary expansion of the human neocortex.

Jun 19, 2020

New York’s Cuomo warns “this could start all over again,” as coronavirus cases rise in other states

Posted by in category: biotech/medical

He said “you now have a tale of two countries going on” as some states see declining COVID-19 cases and others see rising numbers.

Jun 19, 2020

Antibodies in Covid recovered patients last only 2–3 months, finds Nature study

Posted by in category: biotech/medical

The Chinese study also found that asymptomatic individuals have less antibodies than symptomatic ones, a fact that could have significant bearing on vaccines.

Jun 19, 2020

Researchers uncover new insights into Alzheimer’s disease

Posted by in categories: biotech/medical, neuroscience

A new study by Florida State University researchers may help answer some of the most perplexing questions surrounding Alzheimer’s disease, an incurable and progressive illness affecting millions of families around the globe.

FSU Assistant Professor of Psychology Aaron Wilber and graduate student Sarah Danielle Benthem showed that the way two parts of the interact during sleep may explain symptoms experienced by Alzheimer’s patients, a finding that opens up new doors in dementia research. It is believed that these interactions during sleep allow memories to form and thus failure of this normal system in a brain of a person with Alzheimer’s disease may explain why memory is impaired.

The study, a collaboration among the FSU Program in Neuroscience, the University of California, Irvine, and the University of Lethbridge in Alberta, Canada, was published online in the journal Current Biology and will appear in the publication’s July 6 issue.

Jun 18, 2020

Scientists Found a Way to Make Brain Tissue Indestructible

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

:ooooooo.


Superhero-like stretching capabilities aren’t just for Elastigirl. Researchers at the Massachusetts Institute of Technology have come up with a new technology that can make any tissue sample exceptionally flexible.

Continue reading “Scientists Found a Way to Make Brain Tissue Indestructible” »

Jun 18, 2020

A fair reward ensures a good memory, study reveals

Posted by in categories: biotech/medical, neuroscience

How does our memory work, and how can we optimize its mechanisms on a daily basis? These questions are at the heart of many neuroscience research projects. Among the brain structures examined to better understand memory mechanisms, the reward system is now at the center of investigations. Through the examination of brain activity in healthy human subjects, scientists from the University of Geneva (UNIGE) have highlighted the lasting positive effect of a reward—monetary, in this case—on the ability of individuals to retain a variety of information. Moreover, and much more surprisingly, the research team demonstrated that the average accumulation of reward should be neither too small nor too large. By ensuring an effective neural dialog between the reward circuit and the memory circuit, this delicate balance allows the proper encoding of memories in our brain. These results can be read in Nature Communications.

Empirically, it seems quite logical that obtaining a can improve the memories associated with it. But what are the brain mechanisms at work, and how can we exploit them to optimize our memory capacity?

“The positive influence of a reward on memory is a well-known phenomenon,” says Sophie Schwartz, full professor in the Department of Basic Neurosciences at the UNIGE Faculty of Medicine, who led this work. “However, our experiment aimed to take a further step in understanding this mechanism by looking at two important aspects: does the effect last over time and what role does the accumulation of reward play?”

Jun 18, 2020

Tomato’s Hidden DNA Mutations Revealed in Genetic Study of 100 Varieties

Posted by in categories: biotech/medical, genetics

Human appetites have transformed the tomato — DNA and all. After centuries of breeding, what was once a South American berry roughly the size of a pea now takes all sorts of shapes and sizes, from cherry-like to hefty heirloom fruit.

Today, scientists are teasing out how these physical changes show up at the level of genes — work that could guide modern efforts to tweak the tomato, says Howard Hughes Medical Institute Investigator Zachary Lippman.

He and colleagues have now identified long-concealed hidden mutations within the genomes of 100 types of tomato, including an orange-berried wild plant from the Galapagos Islands and varieties typically processed into ketchup and sauce.

Jun 18, 2020

Graphene smart textiles developed for heat adaptive clothing

Posted by in categories: biotech/medical, materials

New research on the two-dimensional (2-D) material graphene has allowed researchers to create smart adaptive clothing which can lower the body temperature of the wearer in hot climates.

A team of scientists from the University of Manchester’s National Graphene Institute have created a prototype garment to demonstrate dynamic thermal radiation control within a piece of clothing by utilising the remarkable thermal properties and flexibility of graphene. The development also opens the door to new applications such as, interactive infrared displays and covert infrared communication on textiles.

The human body radiates energy in the form of electromagnetic waves in the (known as blackbody radiation). In a hot climate it is desirable to make use the full extent of the infrared radiation to lower the body which can be achieved by using infrared-transparent textiles. As for the opposite case, infrared-blocking covers are ideal to minimise the energy loss from the body. Emergency blankets are a common example used to deal with treating extreme cases of body temperature fluctuation.

Jun 18, 2020

CRISPR Could Fry All Cancer Using Newly Found T-Cell

Posted by in category: biotech/medical

One of the human body’s greatest features is its natural antivirus protection. If your immune system is working normally, it produces legions of T-cells that go around looking for abnormalities like cancer cells just to gang up and destroy them. They do this by grabbing on to little protein fragments called antigens that live on the surface of the bad cells and tattle on their whereabouts to the immune system. Once the T-cells have a stranglehold on these antigens, they can release toxins that destroy the bad cell, while minimizing collateral damage to healthy cells.

This rather neat human trick doesn’t always work, however. Cancer cells sometimes mask themselves as healthy cells, or they otherwise thwart T-cell attacks by growing so many antigens on their surface that the T-cells have no place to grab onto.

Medical science has come up with a fairly new method of outfoxing these crafty cancer cells called CAR T-cell therapy. Basically, they withdraw blood from the patient, extract the T-cells, and replace the blood. The T-cells are sent off to a CRISPR lab, where they get injected with a modified, inactive virus that introduces a new gene which causes the T-cells to sprout a little hook on their surface.