Toggle light / dark theme

Our cells perform a marvel of engineering when it comes to packing information into small spaces. Every time a cell divides, it bundles up an amazing 4 meters of DNA into 46 tiny packages, each of which is only several millionths of a meter in length. Researchers from EMBL Heidelberg and the Julius-Maximilians-Universität Würzburg have now discovered how a family of DNA motor proteins succeeds in packaging loosely arranged strands of DNA into compact individual chromosomes during cell division.

The researchers studied , a critical to the process of chromosome formation. Although this complex was discovered more than three decades ago, its mode of action remained largely unexplored. In 2018, researchers from the Häring group at EMBL Heidelberg and their collaborators showed that condensin molecules create loops of DNA, which may explain how chromosomes are formed. However, the inner workings by which the complex achieves this feat remained unknown.

“We have been working on this problem for a long time. But only now, by combining different experimental approaches, we have found an answer to this long-standing question,” said Christian Häring, former Group Leader at EMBL Heidelberg and now Professor at the Julius-Maximilians-Universität Würzburg.

A team of scientists at a company called 3DBio Therapeutics have successfully transplanted a 3D printed ear made from the patient’s own cells, The New York Times reports.

It appears to be a first in the field of tissue engineering, according to experts, and could be the harbinger of a new era of regenerative medicine.

“It’s definitely a big deal,” Carnegie Mellon biomedical engineering researcher Adam Feinberg, who was not involved in the project, told the NYT. “It shows this technology is not an ‘if’ anymore, but a ‘when.’”.

LONDON, June 1 (Reuters) — Monkeypox appears to be spreading from person to person in England, the UK Health Security Agency (UKHSA) said on Wednesday.

The usually mild viral disease, which is endemic in west and central Africa, is understood to spread through close contact. Until early May, cases rarely cropped up outside Africa and were typically linked to travel to there.

“The current outbreak is the first time that the virus has been passed from person to person in England where travel links to an endemic country have not been identified,” the agency said.

Many cancer treatments are notoriously savage on the body. Drugs often attack both healthy cells and tumor cells, causing a plethora of side effects.

Immunotherapies that help the immune system recognize and attack cancer cells are no different. Though they have prolonged the lives of countless patients, they work in only a subset of patients. One study found that fewer than 30 percent of breast cancer patients respond to one of the most common forms of immunotherapy.

But what if drugs could be engineered to attack only tumor cells and spare the rest of the body?

From banking to communication our modern, daily lives are driven by data with ongoing concerns over privacy. Now, a new EPFL paper published in Nature Computational Science argues that many promises made around privacy-preserving mechanisms will never be fulfilled and that we need to accept these inherent limits and not chase the impossible.

Data-driven innovation in the form of personalized medicine, better public services or, for example, greener and more efficient industrial production promises to bring enormous benefits for people and our planet and widespread access to data is considered essential to drive this future. Yet, aggressive data collection and analysis practices raise the alarm over societal values and fundamental rights.

As a result, how to widen access to data while safeguarding the confidentiality of sensitive, has become one of the most prevalent challenges in unleashing the potential of data-driven technologies and a new paper from EPFL’s Security and Privacy Engineering Lab (SPRING) in the School of Comupter and Communication Sciences argues that the promise that any is solvable under both good utility and privacy is akin to chasing rainbows.

Due to safety concerns, the U.S. Food and Drug Administration (FDA) has withdrawn its approval for the cancer medicine Ukoniq (umbralisib). Ukoniq was approved to treat two specific types of lymphoma: marginal zone lymphoma (MZL) and follicular lymphoma (FL).

Updated findings from the UNITY-CLL clinical trial continued to show a possible increased risk of death in patients receiving Ukoniq. As a result, we determined the risks of treatment with Ukoniq outweigh its benefits. Based upon this determination, the drug’s manufacturer, TG Therapeutics, announced it was voluntarily withdrawing Ukoniq from the market for the approved uses in MZL and FL.

Health care professionals should stop prescribing Ukoniq and switch patients to alternative treatments. Inform patients currently taking Ukoniq of the increased risk of death seen in the clinical trial and advise them to stop taking the medicine. In limited circumstances in which a patient may be receiving benefit from Ukoniq, TG Therapeutics plans to make it available under expanded access.

Using the patient’s own cellsAn American biotech company has just announced that they have successfully transplanted a 3D printed human ear into a patient, initially reported by The New York Times. The company, Queens-based 3DBio Therapeutics, printed the ear using the patient’s own cells.


In what has been described as a world first, a U.S. company has created and transplanted a 3D-printed ear made of the patient’s own cells.

Electric organs help electric fish, such as the electric eel, do all sorts of amazing things: They send and receive signals that are akin to bird songs, helping them to recognize other electric fish by species, sex and even individual. A new study in Science Advances explains how small genetic changes enabled electric fish to evolve electric organs. The finding might also help scientists pinpoint the genetic mutations behind some human diseases.

Evolution took advantage of a quirk of genetics to develop electric organs. All fish have duplicate versions of the same gene that produces tiny muscle motors, called . To evolve electric organs, electric fish turned off one duplicate of the channel gene in muscles and turned it on in other cells. The tiny motors that typically make muscles contract were repurposed to generate electric signals, and voila! A new organ with some astonishing capabilities was born.

“This is exciting because we can see how a small change in the gene can completely change where it’s expressed,” said Harold Zakon, professor of neuroscience and integrative biology at The University of Texas at Austin and corresponding author of the study.