Toggle light / dark theme

The Force was strong in him. One of Enzo Romero’s favorite activities is playing the guitar, which he effortlessly does with his bright blue hand. Initially, it used to hurt, as he used his handless right arm to press down on chords. But now, with fingers on the end, he can play music painlessly.


Star Wars: Episode V The Empire Strikes Back, marketed as simply The Empire Strikes Back, is a 1980 film directed by Irvin Kershner and written by Leigh Brackett and Lawrence Kasdan from a story by George Lucas. It is the second part of the Star Wars original trilogy.

The film concerns the continuing struggles of the Rebel Alliance against the Galactic Empire. During the film, Han Solo, Chewbacca, and Princess Leia Organa are being pursued across space by Darth Vader and his elite forces. Meanwhile, Luke Skywalker begins his major Jedi training with Yoda, after an instruction from Obi-Wan Kenobi’s spirit. In an emotional and near-fatal confrontation with Vader, Luke is presented with a horrific revelation and must face his destiny.

Though controversial upon release, the film has proved to be the most popular film in the series among fans and critics and is now widely regarded as one of the best sequel films of all time, as well as one of the greatest films of all time. It was re-released with changes in 1997 and on DVD in 2004. The film was re-released on Blu-ray format in September of 2011. A radio adaptation was broadcast on National Public Radio in the U.S.A. in 1983. The film was selected in 2010 to be preserved by the Library of Congress as part of its National Film Registry.

A chip-based infection model developed by researchers in Jena, Germany, enables live microscopic observation of damage to lung tissue caused by the invasive fungal infection aspergillosis. The team developed algorithms to track the spread of fungal hyphae as well as the response of immune cells. The development is based on a “lung-on-chip” model also developed in Jena and can help reduce the number of animal experiments. The results were presented in the journal Biomaterials.

Aspergillosis is a mold infection caused by Aspergillus fumigatus, which often affects the lungs. The disease can be fatal, especially in immunocompromised individuals. In these cases, invasive aspergillosis usually occurs with fungal hyphae invading . So far, there are only a few active substances that can combat such fungal infections. “That’s why it was so important for us to be able to represent this invasive growth in a ,” says Marie von Lilienfeld-Toal, who co-led the study. The internist is a professor at the Department of Internal Medicine II at Jena University Hospital and conducts research at the Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI) in Jena, Germany.

The new aspergillosis infection model should help to better observe both the growth of the fungus and the reaction of the immune system and to find possible new approaches for therapies. In addition, new active substances can be tested. The expertise for this is available in Jena: Organ chips have long been developed at the university hospital. The startup Dynamic42, which manufactures the lung chips used in the study, was founded there. First author Mai Hoang also joined the company after completing her doctorate.

When cities transform into a colorful world of lights as darkness falls, it’s often only possible to estimate their contours, which depending on the perspective can draw the attention to key details or trivia. In fluorescence microscopy, biological cells are marked with fluorescent dyes and excited to luminesce in specific areas by optical switches– like a city at night. However, this light is usually too faint for small, rapid objects, or even goes out after a while. This is known as fluorescence bleaching.

Now, a new approach developed by Prof. Dr. Alexander Rohrbach and his team in the Laboratory for Bio-and Nano-Photonics at the University of Freiburg has found a way to make the smallest objects clearly visible without fluorescence. In this way, cellular structures or virus-sized particles can be observed 100 to 1,000 times longer, ten to 100-times faster and with almost doubled resolution than with . While fluorescence microscopy records what you might call “night-time images” of structures, ROCS microscopy takes “day-time images”—opposites that can complement each other excellently. Rohrbach and his colleagues describe various applications of the technology in the latest issue of Nature Communications.

Very good news, if unsurprising.

We already have multiple viable avenues of reducing — or eliminating altogether — this particularly pernicious form of remorseless biological entropy.

So good news… UNLESS you’re one of those people who think death is what MAKES life somehow MEANINGFUL, or that living for thousands of years or more would be BORING.

I — incase you haven’t noticed — am NOT one of those people! 😉👈


The mystery of why humans die at around 80, while other mammals live far shorter or longer lives, may finally have been solved by scientists.

Humans and animals die after amassing a similar number of genetic mutations, researchers have found, suggesting the speed of DNA errors is critical in determining the lifespan of a species.

Circa 2015


Engineers from the University of California, San Diego have developed an ultra-thin temporary tattoo that can painlessly and accurately monitor the glucose levels of diabetics.

The flexible device costs just a few cents and lasts for a day at a time, and early tests have shown that it’s just as sensitive as a finger-prick test.

But even cooler is the fact that the system works without blood, by extracting and measuring the glucose from the fluid in between skin cells, and could eventually be adapted to detect other important metabolites in the body, or deliver medicine.

The Interventions Testing Program is the gold standard for testing longevity drugs. What do the results say about which ones extend lifespan in mice? Rapamycin is a big winner!

New podcast w/ Richard Miller on the data on several longevity supplements including Acarbose, NR, Resveratrol, Fisetin, MCT Oil, Curcumin, Fish Oil + more!


Live Longer World is bringing information on longevity science from scientists to everyone. To receive new posts and support my work, consider becoming a free or paid subscriber.

Sending miniature robots deep inside the human skull to treat brain disorders has long been the stuff of science fiction—but it could soon become reality, according to a California start-up.

Bionaut Labs plans its first on humans in just two years for its tiny injectable robots, which can be carefully guided through the using magnets.

“The idea of the micro robot came about way before I was born,” said co-founder and CEO Michael Shpigelmacher.

Summary: Researchers identified a genetic correlation between blood biomarkers and a range of mental health disorders. The study provides evidence some substance measures within the blood may be involved in the cause of mental illnesses. For example, immune system proteins may be involved in the development of depression, schizophrenia, and anorexia.

Source: The Conversation.

Mental health disorders including depression, schizophrenia, and anorexia show links to biological markers detected in routine blood tests, according to our new study of genetic, biochemical and psychiatric data from almost a million people.

Supercomputers are extremely fast, but also use a lot of power. Neuromorphic computing, which takes our brain as a model to build fast and energy-efficient computers, can offer a viable and much-needed alternative. The technology has a wealth of opportunities, for example in autonomous driving, interpreting medical images, edge AI or long-haul optical communications. Electrical engineer Patty Stabile is a pioneer when it comes to exploring new brain-and biology-inspired computing paradigms. “TU/e combines all it takes to demonstrate the possibilities of photon-based neuromorphic computing for AI applications.”

Patty Stabile, an associate professor in the department of Electrical Engineering, was among the first to enter the emerging field of photonic neuromorphic computing.

“I had been working on a proposal to build photonic digital artificial neurons when in 2017 researchers from MIT published an article describing how they developed a small chip for carrying out the same algebraic operations, but in an analog way. That is when I realized that synapses based on analog technology were the way to go for running artificial intelligence, and I have been hooked on the subject ever since.”