Toggle light / dark theme

The timeframe for reinfection is fundamental to numerous aspects of public health decision making. As the COVID-19 pandemic continues, reinfection is likely to become increasingly common. Maintaining public health measures that curb transmission—including among individuals who were previously infected with SARS-CoV-2—coupled with persistent efforts to accelerate vaccination worldwide is critical to the prevention of COVID-19 morbidity and mortality.

US National Science Foundation.

And, depending on how further studies progress, it could be implemented via gene therapy.

Early-stage pancreatic cancer has a ‘reset button’

“These findings open up the possibility of designing a new gene therapy or drug because now we can convert cancerous cells back into their normal state,” said Professor Bumsoo Han of Purdue’s mechanical engineering, who is also the program leader for the university’s Center for Cancer Research, in a blog post shared on the university’s official website. Han has also received a courtesy appointment in biomedical engineering, according to the post. The new time machine (speaking figuratively) from Han’s lab is a lifelike reproduction of a specific structure of the pancreas, called the acinus, which secretes and produces digestive enzymes into the small intestine. When pancreatic cancer strikes, it typically comes from chronic inflammation, which is caused by a mutation that tricks the digestive enzymes to begin digesting the pancreas itself. This is bad.

Brains aren’t the easiest of organs to study, what with their delicate wiring and subtle whispering of neurotransmitter messages. Now, this research could be made a little easier, as we’ve learned we can swap some critical chemical systems with the host animal being none the wiser.

In a proof-of-concept study run by a team of US researchers, the microscopic worm Caenorhabditis elegans was genetically gifted pieces of a nervous system taken from a radically different creature – a curious freshwater organism known as Hydra.

The swap wasn’t unlike teaching a specific brain circuit a foreign language, and finding it performs its job just as well as before.

Genetic information can be messy. Mapping proteins could offer a clearer view of what’s driving cancer.


Scientists have unveiled new maps of the protein networks underlying different types of cancer, offering a potentially clearer way to see what’s driving the disease and to find therapeutic targets.

Sequencing the genetic information of tumors can provide a trove of data about the mutations contained in those cancer cells. Some of those mutations help doctors figure out the best way to treat a patient, but others remain more of a mystery than a clear instruction manual. Many are exceedingly rare, or there are so many mutations it’s not clear what’s fueling the cancer.

Developing drugs for a range of tauopathies — dr leticia toledo-sherman, senior director, drug discovery, tau consortium, rainwater charitable foundation.


Dr. Leticia Toledo-Sherman is Senior Director of Drug Discovery of the Tau Consortium (https://tauconsortium.org/) for The Rainwater Charitable Foundation (https://rainwatercharitablefoundation.org/medical-research) and also holds an appointment as Adjunct Assistant Professor of Neurology at UCLA.

Dr. Toledo-Sherman leads drug discovery activities for an international network of scientists working to develop therapies for Tauopathies, a group of neurodegenerative disorders characterized by the deposition of abnormal Tau protein in the brain.

Interesting.


Everybody knows sleep is important, but there’s still a lot we don’t understand about what it actually does to the brain – and how its benefits could be boosted. To investigate, the US Army has awarded researchers at Rice University and other institutions a grant to develop a portable skullcap that can monitor and adjust the flow of fluid through the brain during sleep.

Most of us are familiar with the brain fog that comes with not getting enough sleep, but the exact processes going on in there remain mysterious. In 2012 scientists made a huge breakthrough in the field by discovering the glymphatic system, which cleans out toxic waste products from the brain during deep sleep by flushing it with cerebrospinal fluid. Disruptions to sleep – and therefore the glymphatic system – have been increasingly associated with neurological disorders such as Alzheimer’s.

Studying the glymphatic system could provide new insights into sleep disorders and how to treat them, but currently it requires big bulky MRI machines. So the US Army is funding researchers at Rice University, Houston Methodist and Baylor College of Medicine to develop a wearable skullcap.

“The Foundation has created a unique and transparent mechanism for boosting early longevity research worldwide and ensuring mass public participation in decision making,” said Alex Zhavoronkov, Visionary Board member and an expert in AI-powered drug discovery. “This approach finally allows us to speak about getting closer to the idea of mass adoption of longevity ideas and treatments.”

“Age is the greatest risk factor for nearly every major cause of death and disability in developed nations. Therapeutically targeting biological aging is key to fulfilling the promise of 21st century medicine, and the Foundation is poised to play a central role in making this a reality,” said Matt Kaeberlein, CEO of the American Aging Association and Professor at the University of Washington, where he leads several major initiatives.

“In five years, healthy longevity will not only exist as a lab-proven concept, but will become part of everyone’s life,” said Andrea Maier, Visionary Board member and co-director of the Centre for Healthy Longevity at the National University of Singapore.