Toggle light / dark theme

MicroRNAs guide the development of Purkinje cells

Previous studies have suggested that microRNAs are critical for brain development, but their specific role in differentiation—the process of stem cells maturing into specialized cells—remained unclear.

“When neurons develop, they need to at some point decide what subtype they will become, but we really didn’t know much about the blueprint that instructs this differentiation,” says the author. “There was a lot of evidence suggesting that microRNAs might have a very important role here, but because the tools were not good enough, we couldn’t really nail down that question until now.”

The team focused on Purkinje cells, which comprise less than 1% of cells in the cerebellum. Purkinje cells integrate information from different parts of the brain and body, enabling us to make smooth, controlled movements. They are some of the largest brain cells and have a tree-like appearance—a single axon “trunk” that supports a system of “branches” known as the dendritic arbor. Purkinje cells are also surrounded by structures called climbing fibers that wrap around the cells’ dendrites and deliver information from other parts of the brain.

To attain their large size and elaborate arbor, Purkinje cell development involves prolonged periods of growth and branching. In mice, the long process of Purkinje cell development is complete around four weeks after birth.

To investigate how microRNAs are involved in neuron differentiation, the team developed new tools that temporarily turn off microRNA function during specific developmental windows. They found that microRNAs are critical during two phases in Purkinje cell development: inhibiting microRNAs during the first week after birth resulted in Purkinje cells with less complex dendritic arbors and smaller cerebellums. In contrast, inhibiting microRNAs during the third week after birth prevented the Purkinje cells from forming synaptic connections with climbing fibers. These findings shed light on how microRNAs control the precise timing of different aspects of Purkinje cell development that were previously thought to happen concurrently.

The team also developed a mouse model to identify which genes the microRNA molecules were targeting. Using this system, they identified two microRNAs critical for Purkinje cell development (miR-206 and miR-133) and four gene targets (Shank3, Prag1, Vash1, and En2). When they compared the Purkinje cell microRNA-target map to a map for pyramidal neurons—a functionally different but similar-looking brain cell—they showed that the two cell types follow very different microRNA blueprints during development.


K Allado-McDowell | On Neural Media | Long Now Talks

How will AI shape our understanding of our creativity and ourselves?

In February, artist and technologist K Allado-McDowell delivered a fascinating Long Now Talk that explored the dimensions of Neural Media — their term for an emerging set of creative forms that use artificial neural networks inspired by the connective design of the human brain.

Their Long Now Talk is a journey through the strange valleys and outcroppings of this age of neural media, telling a story involving statistical distributions, anti-aging influencers at war with death itself, and vast quantities of “AI Slop,” the low-quality, faintly surreal output of cheap, rapidly proliferating image models.

Yet even in this morass of slop Allado-McDowell sees reason for optimism. Referring to the title of their 2020 book Pharmako-AI, which was co-written with GPT-3, Allado-McDowell notes that the Greek word pharmakon could mean both drug and cure. What may seem poisonous or dangerous in this new paradigm of neural media could also unlock for us new and deeper ways of understanding ourselves, our planet, and all of the intelligent networks that live within it.

This talk was presented February 25, 02025 at the Cowell Theatre in San Francisco. The event livestream is here: https://www.youtube.com/live/AsCGRjl3zac?si=KBfIfkqatLwdMr8M

Episode notes: https://longnow.org/ideas/neural-media/

World’s first baby born by IVF done almost entirely by a machine

A highly automated form of in vitro fertilisation (IVF) has led to a successful birth, raising hopes that this approach could cut the risk of human error during such procedures.

One method of IVF is intracytoplasmic sperm injection (ICSI), where sperm is injected into eggs in a lab dish. This is commonly used in cases of male infertility, as the sperm don’t have to work to reach an egg. Any resulting embryos are then inserted into the uterus. IVF can also be done by mixing sperm and eggs in a lab dish in the hope that fertilisation will take place, which is generally less successful, but also requires less medical intervention.

Image: Conceivable Life Sciences


A baby has been born after being conceived via IVF performed by a machine, with a medical professional merely overseeing the process.

By Carissa Wong

MicroRNA regulation of enteric nervous system development and disease

MicroRNAs (miRNAs) serve as key regulators of enteric nervous system development, orchestrating migration, proliferation, and differentiation of enteric nervous system progenitors.

Aberrant miRNA expression underpins the pathogenesis of several enteric neuropathies, including Hirschsprung’s disease.

A convergence of miRNA activity across distinct enteric neuropathies highlights shared molecular pathways, exemplified by the miR-200 family.

Modulating the expression of miRNAs to influence their associated gene expression networks has therapeutic potential for enteric neuropathies. https://sciencemission.com/MicroRNA-regulation-of-enteric-ne…nd-disease


The enteric nervous system (ENS), an elaborate network of neurons and glia woven through the gastrointestinal tract, is integral for digestive physiology and broader human health. Commensurate with its importance, ENS dysfunction is linked to a range of debilitating gastrointestinal disorders. MicroRNAs (miRNAs), with their pleiotropic roles in post-transcriptional gene regulation, serve as key developmental effectors within the ENS. Herein, we review the regulatory dynamics of miRNAs in ENS ontogeny, showcasing specific miRNAs implicated in both congenital and acquired enteric neuropathies, such as Hirschsprung’s disease (HSCR), achalasia, intestinal neuronal dysplasia (IND), chronic intestinal pseudo-obstruction (CIPO), and slow transit constipation (STC).

MARIGOLD and MitoCIAO, two searchable compendia to visualize and functionalize protein complexes during mitochondrial remodeling

Tools for mitochondrial protein complex evaluation during remodeling.

Assembly of mitochondrial proteins into high molecular weight complexes is essential for their functions.

The authors developed and validated two searchable compendia of these mitochondrial complexes.

These two online-available tools, MARIGOLD and MitoCIAO, map the mitochondrial protein interactions during membrane remodeling.

MARIGOLD provides ‘‘digital western blots’’ of queried proteins in their native complexes. MitoCIAO predicts their comigrating partners. MitoCIAO correctly predicted biologically validated interactions among components of the mitochondrial cristae organization system (MICOS) and optic atrophy 1 (OPA1) complexes.

These tools deorphanize two ATAD3A-containing complexes participating in cristae biogenesis and mitoribosome stability. https://sciencemission.com/MARIGOLD-and-MitoCIAO


Cell biologists discover two proteins are key to proper transfer of genetic material

The biological research of UC Santa Cruz’s Needhi Bhalla to determine the molecular motions at the heart of heredity has yielded a new discovery: The proper transfer of genetic materials depends on two key proteins that choreograph the delicate dance between chromosomes when sexual-reproduction cells divide.

When cells split to create eggs and sperm, they must undergo a crucial process called “meiotic crossover recombination.” This mechanism ensures that is properly shuffled between chromosomes, preventing errors that could lead to disorders such as miscarriages, infertility, birth defects, and even cancer.

This process also results in the endearing transfer of traits that parents see in their children. And beyond contributing to parental pride, Bhalla says meiotic crossover recombination is fundamental for human evolution by promoting . That’s why the identification of two specific proteins that play central roles in controlling how and where these crossovers happen is so significant.

Scientists Discover Unexpected Link Between Diet And Lung Cancer Risk

Most of us would probably think of smoking or air pollution when it comes to lung cancer risk, but researchers have discovered an intriguing link between the disease and the quality of our diets.

The researchers, from the University of Florida and the University of Kentucky, found that the molecule glycogen, which stores the simple sugar glucose, could potentially act as a driver of some types of lung cancer.

Glycogen was found at higher levels in human tissue samples of lung adenocarcinoma, the type responsible for 40 percent of lung cancers worldwide. In tests on mice, the team found that more glycogen helped lung cancers to grow faster, while taking the molecule away led to restricted tumor growth.

Which Biomarkers Are Associated With Cancer Cachexia?

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Scientists propose a targeted lysosomal dysfunction approach for glioblastoma treatment

Researchers at Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, report in Nature Communications on how the targeted suppression of lysosome function may lead to brain cancer therapy.

Glioblastoma is a type of brain cancer with a very poor prognosis of survival. Causes of are not known, and there is no method for preventing the cancer. Traditional treatment includes the drug temozolomide (TMZ). In many cases, TMZ kills glioblastoma cells, but a significant portion of patients show resistance to the drug.

Changes in the levels of metabolites— playing key roles in metabolic processes in living organisms—have been observed in TMZ-resistant glioblastoma cells, pointing to the importance of understanding and targeting metabolic pathways in the context of cancer therapy.