Toggle light / dark theme

Summary: Stem cells in human urine have the potential to regenerate tissue.

Source: wake forest baptist medical center.

The Wake Forest Institute for Regenerative Medicine (WFIRM) researchers who were the first to identify that stem cells in human urine have potential for tissue regenerative effects, continue their investigation into the power of these cells.

Extrusion-based 3D printing/bioprinting is a promising approach to generating patient-specific, tissue-engineered grafts. However, a major challenge in extrusion-based 3D printing and bioprinting is that most currently used materials lack the versatility to be used in a wide range of applications.

New nanotechnology has been developed by a team of researchers from Texas A&M University that leverages colloidal interactions of nanoparticles to print complex geometries that can mimic tissue and organ structure. The team, led by Dr. Akhilesh Gaharwar, associate professor and Presidential Impact Fellow in the Department of Biomedical Engineering, has introduced colloidal solutions of 2D nanosilicates as a platform technology to print complex structures.

2D nanosilicates are disc-shaped inorganic nanoparticles 20 to 50 nanometers in diameter and 1 to 2 nanometers in thickness. These nanosilicates form a “house-of-cards” structure above a certain concentration in water, known as a colloidal solution.

Mitochondria are the power plants of cells, and they contain their own genetic material and RNA molecules. Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now discovered that certain modifications in mitochondrial RNA boost the invasive spread of cancer cells by supporting protein synthesis in mitochondria. They have established that a specific gene expression signature correlating with high levels of mitochondrial RNA modifications is associated with metastasis and poor prognosis in patients with head and neck cancer. When the researchers blocked the responsible RNA modifying enzyme in cancer cells, the number of metastases was reduced. Certain antibiotics that suppress protein synthesis in mitochondria were also able to prevent the invasive spread of cancer cells in laboratory experiments. The results have now been published in the journal Nature.

Cancer cells in aggressive tumors invade the surrounding tissue in an attempt to form a new tumor in other organs. During this journey, cancer cells have to survive unfavorable conditions such as shortage of oxygen or shortage in nutrients. To overcome these stress factors, cancer cells adapt their accordingly. The allowing this flexibility were poorly understood until now. “However, we suspected that this metabolic plasticity must be a key to the successful spread of the cancer cells,” says Michaela Frye; cell biologist at the German Cancer Research Center.

Mitochondria are tiny, membrane-enveloped structures known as the powerhouse of every cell in our body. For energy production, they use the so-called respiratory chain present in the mitochondrial membrane. Because mitochondria contain their own genetic material, they themselves produce key components of the respiratory chain.

Probiotics show a new to battle cancer and other diseases keeping the host body healthy with its anti inflammation abilities.


Gut microbiota is widely considered to be one of the most important components to maintain balanced homeostasis. Looking forward, probiotic bacteria have been shown to play a significant role in immunomodulation and display antitumour properties. Bacterial strains could be responsible for detection and degradation of potential carcinogens and production of short-chain fatty acids, which affect cell death and proliferation and are known as signaling molecules in the immune system. Lactic acid bacteria present in the gut has been shown to have a role in regression of carcinogenesis due to their influence on immunomodulation, which can stand as a proof of interaction between bacterial metabolites and immune and epithelial cells. Probiotic bacteria have the ability to both increase and decrease the production of anti-inflammatory cytokines which play an important role in prevention of carcinogenesis. They are also capable of activating phagocytes in order to eliminate early-stage cancer cells. Application of heat-killed probiotic bacteria coupled with radiation had a positive influence on enhancing immunological recognition of cancer cells. In the absence of active microbiota, murine immunity to carcinogens has been decreased. There are numerous cohort studies showing the correlation between ingestion of dairy products and the risk of colon and colorectal cancer. An idea of using probiotic bacteria as vectors to administer drugs has emerged lately as several papers presenting successful results have been revealed. Within the next few years, probiotic bacteria as well as gut microbiota are likely to become an important component in cancer prevention and treatment.

Cancer is considered as one of the most significant causes of death. The treatment of tumors has received much attention in the last years; however, the number of people suffering neoplastic syndrome is still increasing. Thus, researchers are trying to face this process searching for innovative therapies and prophylaxis. Despite the fact that cancer risk indisputably depends on genetic factors, immunological condition of the organism plays a considerable role in it, that being closely associated with probiotic bacteria and commensal bacterial flora presented mainly in the digestive tract. Probiotic strains, inter alia Bifidobacterium, or Lactobacillus, widely present in commonly consumed fermented milk products, are known to have various beneficial effects on health. To date, there is a plethora of studies investigating the correlation between intestinal microbiota and carcinogenesis which have been evaluated in this article.

“The analogy I often use is an electric bike,” he added. “When someone’s pedaling but having difficulty, the bike senses it and augments it. We’ve made the equivalent of that for human mental function.”

Participants in the trial reported that their anxiety got better once the system jumped into action, mostly due to the fact that they had more cognitive control and were able to shift their focus better.

“This could be a totally new approach in treating mental illness,” Widge said. “Instead of trying to suppress symptoms, we could give patients a tool that lets them take control of their own minds.”

Blood pressure is one of the most important indicators of heart health, but it’s tough to frequently and reliably measure outside of a clinical setting. For decades, cuff-based devices that constrict around the arm to give a reading have been the gold standard. But now, researchers at The University of Texas at Austin and Texas A&M University have developed an electronic tattoo that can be worn comfortably on the wrist for hours and deliver continuous blood pressure measurements at an accuracy level exceeding nearly all available options on the market today.

“Blood pressure is the most important vital sign you can measure, but the methods to do it outside of the clinic passively, without a cuff, are very limited,” said Deji Akinwande, a professor in the Department of Electrical and Computer Engineering at UT Austin and one of the co-leaders of the project, which is documented in a new paper published today in Nature Nanotechnology.

High blood pressure can lead to serious heart conditions if left untreated. It can be hard to capture with a traditional blood pressure check because that only measures a moment in time, a single data point.

In a surprise finding, researchers have found that getting at least one flu shot makes it 40 percent less likely for people over the age of 65 to be diagnosed with Alzheimer’s disease, up to four years later.

While it’s still far too early to determine if there are any direct causal links between the common vaccine and neurological health outcomes like Alzheimer’s — in other words, we don’t know if it’s the flu vaccine itself or something else responsible for the results — the research is certainly an eyebrow-raising new development that could, potentially, point in the direction of easily accessible treatments.

In a peer-reviewed study in the Journal of Alzheimer’s Disease, researchers at UTHealth Houston compared the incidence rate of the disease in patients with and without at least one flu vaccination in a nationwide sample of US adults aged 65 and up, which included 935,887 vaccinated and 935,887 non-vaccinated individuals.

Neurograins might be the future of implantable Brain Computer Interfaces due to their advantages in terms of abilities and safety in terms of implantation. Due to being the smallest Microchips ever made, in addition to being very powerful, they can make very high resolution recordings of brain activity and even stimulate areas in the brain for medical treatments for people suffering from brain disorders.

The field of neuroscience is developing at a rapid pace, which constantly improves on our BCI Technology and enabling more and more treatments and applications for Brain Computer Interface. It’s clear that this is very advanced future technology and who knows, maybe these new Neurograin Brain Computer Interfaces may play a part in it. Or maybe Elon Musk’s Neuralink’s approach will win in the end. People willingly microchipping their brains will be more common in the future.

If you enjoyed this video, please consider rating this video and subscribing to our channel for more frequent uploads. Thank you! smile

TIMESTAMPS:
00:00 The smallest Chips ever made?
01:48 How is it different?
02:47 How this Brain Computer Interface works.
03:51 What can this BCI do?
05:46 The Future of Brain Computer Interfaces.
08:30 Last Words.

#Neurograins #bci #neuralink

The preclinical drug works by inhibiting the kinase Cdk5 which is found in mature neurons. Cdk5 has long been linked to neuropsychiatric and neurodegenerative disorders, but prior inhibitors have largely failed to cross the blood-brain barrier and enter the brain.

A new preclinical drug reported by James Bibb, Ph.D., and colleagues has the potential to combat depression, brain injury, and cognitive disorders. The drug, which is notable for being brain-permeable, works by inhibiting the kinase enzyme Cdk5.

Cdk5 is an important signaling regulator in brain neurons. Over three decades of research, it has been linked to neuropsychiatric and degenerative disorders such as Alzheimer’s.