Toggle light / dark theme

Circa 2008 face_with_colon_three


Adult bone marrow (BM) houses a tiny pool of hematopoietic stem cells (HSCs) that have the ability to maintain not only themselves but also all the rest of highly turning over blood lineages throughout the mammalian life (1, 2). Hence, the ability to sustain HSC in tissue culture would allow serial introduction of gain or loss of function mutations efficiently in hematopoietic system. However, our failure to expand HSC in culture has hampered the use of this approach. In fact, BM suspension cultures lose rapidly their HSC content despite vigorous growth of progenitors and more differentiated cells at least for 3 weeks even in optimal cytokine milieu (3, 4). Therefore, the phenomenon of stem cell exhaustion or senescence may set the limits that make it impossible even in principle to expand HSC in culture for longer periods (5–7).

Mouse HSC do expand in vivo (8, 9), at least up to 8000-fold, as shown by Iscove and Nawa (9) through serial transplantation experiments that assessed carefully the input and output contents of HSC in each transfer generation. Recently also in vitro approaches have been improved and refined culture conditions with new growth factors can now support up to 30-fold expansion of mouse HSC ex vivo (10). However, since it is not clear to what extent external culture conditions can be improved, alternative but not mutually exclusive efforts to change the intrinsic properties of HSC have been taken. Seminal experiments in this respect by Humphries, Savageau and their colleagues have shown that ectopic expression of HOXB4 transcription factor in BM cells support the survival and expansion of HSC in vivo and importantly also in vitro (11–13). By rigorously monitoring the HSC content in their cultures of HOXB4-transduced BM cells, they found that HSC could be expanded up to 41-fold in the 2-week liquid cultures (13). HOXB4 belongs to a large family of HOX transcription factors that are crucial for the basic developmental processes in addition to their role in maintenance of different stem cell compartments.

Capitalizing on the findings of Humphries, Savageau and their colleagues, we have established long-term murine BM cultures of HOXB4-transduced cells (HOX cells) and monitored their stem cell content to find out how extensively genetically modified HSC and their multipotent primitive progenitors (MPPs) can be expanded in culture for experimental purposes. In addition and for comparison, we established BM cultures transduced with constructs encoding for Nucleoporin 98 (NUP)–HOXB4 (NUP cells) fusion protein again following the lead of Humphries et al. (14) who showed that ectopic expression of similar fusions promoted in vivo even more robust expansion and survival of HSC.

Chardan hosted its 4th Annual Chardan Genetic Medicines Conference in October 2020, featuring over 80 public and private companies representing in vivo gene therapy, ex vivo gene therapy, gene editing, RNA medicines, and other subsegments of the genetic medicines space. Among our various panels with preeminent thought leaders, we spoke with newly-minted Nobel laureate, President of the Innovative Genomics Institute, and Professor of Molecular and Cell Biology and Chemistry at UC Berkeley, Jennifer Doudna.

PhD about open questions and areas of innovation in the CRISPR gene editing space.

A study on naked mole rats could help scientists prevent and better treat human illnesses.

According to new research conducted by University of Cambridge scientists, naked mole rats age healthily, very rarely get cancer, and are numb to acid.

The team hopes to utilize these insights to find better treatment methods for human illnesses and inflammatory conditions such as arthritis, according to an institutional press release.

A new autoimmune therapy harnesses a person’s own cells to find and correct other defective cells – an answer for patients who haven’t responded to other treatments and a possible cure for diseases like lupus.

Autoimmune diseases are conditions where the body’s immune system attacks other cells in the body and causes symptoms like inflammation. This happens through autoantibodies, or antibodies that attack the self, produced by a type of white blood known as B cells.

New research tests a type of immunotherapy where T cells, another type of white blood cell, are edited to root out the defective B cells.

Circa 2019 face_with_colon_three


The most widely used methods for transdermal administration of the drugs are hypodermic needles, topical creams, and transdermal patches. The effect of most of the therapeutic agents is limited due to the stratum corneum layer of the skin, which serves as a barrier for the molecules and thus only a few molecules are able to reach the site of action. A new form of delivery system called the microneedles helps to enhance the delivery of the drug through this route and overcoming the various problems associated with the conventional formulations. The primary principle involves disruption of the skin layer, thus creating micron size pathways that lead the drug directly to the epidermis or upper dermis region from where the drug can directly go into the systemic circulation without facing the barrier. This review describes the various potential and applications of the microneedles. The various types of microneedles can be fabricated like solid, dissolving, hydrogel, coated and hollow microneedles. Fabrication method selected depends on the type and material of the microneedle. This system has increased its application to many fields like oligonucleotide delivery, vaccine delivery, insulin delivery, and even in cosmetics. In recent years, many microneedle products are coming into the market. Although a lot of research needs to be done to overcome the various challenges before the microneedles can successfully launch into the market.

With billions of dollars flooding into longevity, what role will epigenetic clocks play in measuring and intervening in aging?

When Horvath first described epigenetic clocks, scientists began to speculate that altering them could reverse aging. After all, if certain patterns of DNA methylation at certain sites in cells in certain tissues of your body are hallmarks of aging, could shifting them somehow reverse aging?

The future of mind-controlled machines might not be as far away as we think.

As director of DARPA’s Biological Technologies Office, Dr Justin Sanchez is part of a team that is looking at how to decode brain signals and use them to control robotic prosthetics.

His research includes the visualisation and decoding of brain activity, the development of devices that could help patients with memory deficits, and advanced prosthetic arm systems that could restore feeling and movement after an injury.

The former associate professor of Biomedical Engineering and Neuroscience at the University of Miami has also looked at the potential of neurotechnology for treating paralysis, Tourette’s Syndrome and Obsessive Compulsive Disorder.

In this talk Dr Justin Sanchez takes us through various real world applications of direct neural interfaces.