Toggle light / dark theme

Growing miniature organ-like tissues in the lab is already within our reach. Now, researchers from Japan have developed a new approach that enables intestinal mini-organs to be grown more easily and efficiently in the lab. This holds immense promise for regenerative medicine.

In a study published in November in Cell Reports Methods, researchers from Tokyo Medical and Dental University (TMDU) reveal that applying a few specialized lab techniques yields intestine-like tissues of predictable size and composition.

Organoids are organ-like balls of cells that are grown in the lab from spheroids (even smaller balls) of and mimic the properties of the organ from which the “seed” cell was taken. Organoids are used for studying organ function in a lab setting and are also promising tools in the field of regenerative medicine.

With all the factors that may impact gut health, it can be hard to know what’s causing stomach troubles and potentially affecting long-term wellness.

In a recent TikTok video via Houston Methodist hospital system, gastroenterologist Dr. Neeharika Kalakota shared a few simple rules of thumb she follows to maintain a healthy gut.

As an expert on digestive health, Kalakota said she recommends that her patients stay up-to-date on colon cancer screenings and avoid colonic “cleanses,” which can wreak havoc on the bowel and rectum.

According to a meta-analysis recently published in Neurology, the medical journal of the American Academy of Neurology, higher exposure to a certain type of traffic-related air pollution known as particulate matter may be connected to an increased risk of dementia. Researchers focused on fine particulate matter, or PM2.5, which is made up of airborne pollutants with a diameter of fewer than 2.5 microns. The meta-analysis examined all available studies on the relationship between air pollution and dementia risk.

“As people continue to live longer, conditions like dementia are becoming more common, so detecting and understanding preventable risk factors is key to reducing the increase of this disease,” said study author Ehsan Abolhasani, MD, MSc, of Western University in London, Canada. “Since a report by the World Health Organization showed that more than 90% of the world population is living in areas with higher than recommended levels of air pollution, our results provide more evidence for enforcing regulations for air quality and accelerating the transition from fossil fuels to sustainable energies.”

17 studies were analyzed by the researchers for the meta-analysis. Participants had a minimum age of 40. More than 91 million individuals took part in all the studies. 5.5 million of them, or 6%, developed dementia.

Even worms have a ticking fertility clock. Older worms are less efficient at repairing broken DNA strands while making egg cells—part of a process that’s essential for fertility. A new study from University of Oregon (UO) biologists suggests one possible reason that reproduction slows with age.

Researchers from the lab of Diana Libuda report the findings in a paper published Nov. 7 in PLOS Genetics.

Each sperm or egg cell has only half the number of chromosomes found in a regular cell. During meiosis, the cell division process that forms sperm and eggs, the parent cells must evenly divide their DNA. The costs of error can be high, since incorrectly divided chromosomes are a major cause of birth defects.

Scientists from EPFL and the University of Lausanne have used a chip that was originally designed for environmental science to study the properties of biocement formation. This material has the potential to replace traditional cement binders in certain civil engineering applications.

The chip is the size of a credit card and its surface is engraved with a flow channel measuring one meter from end to end that is as thick as a human hair. Researchers can inject a solution into one end of the channel and, with the help of time-lapse microscopy, observe the solution’s behavior over several hours. Medical scientists have used similar chips for health care applications, such as to examine how arteries get clogged or how a drug spreads into the bloodstream, while environmental engineers have applied them to the study of biofilms and contaminants in drinking water.

Now, a team of civil engineers at EPFL’s Laboratory of Soil Mechanics (LMS), together with scientists from the Faculty of Geosciences and Environment at the University of Lausanne (UNIL), have repurposed the chip to understand complex transport-reaction phenomena involved in the formation of new kinds of biocement.

Duke University biomedical engineers have demonstrated the most effective pancreatic cancer treatment yet recorded in mouse models. While most mouse trials consider just stopping growth to be a success, the new treatment fully eliminated tumors in 80% of mice across many model types, including those considered to be the most difficult to treat.

The approach combines traditional chemotherapy drugs with a new method for irradiating the tumor. The treatment implants radioactive iodine-131 directly into the tumor inside a gel-like depot that protects healthy tissue and is absorbed by the body once the radiation fades, as opposed to administering radiation from an external beam that passes through healthy tissue.

The study was recently published in the journal Nature Biomedical Engineering.

The use of smartphones has become an increasingly popular behaviour in people’s lives. However, an increased number of people find it difficult to minimise the use of smartphones, leading to the emergence of smartphone-addictive behaviours (Panova and Carbonell, 2018; Busch and McCarthy, 2021). In particular, the rapid spread of coronavirus disease 2019 around the world has led to a dramatic increase in the number of smartphone addicts due to home isolation (Caponnetto et al., 2021). Smartphone addiction is an emerging behavioural addiction, which refers to excessive dependence on and abuse of smartphones by individuals (Kwon et al., 2013; Billieux et al., 2015). Notably, smartphone addiction has been reported to have negative impacts on individuals’ cognitive functions, such as attention (Choi et al., 2021; Lee et al., 2021), perception (Dong et al., 2014) and memory (Hartanto and Yang, 2016; Tanil et al., 2020). Nevertheless, the influence of smartphone addiction on individuals’ advanced cognition is still unclear. Smartphone addiction may impair flexible cognitive processes (Dong et al., 2014), such as those that contribute to creative cognition. However, to our knowledge, the influence of smartphone addiction on creative cognition has not been explored.

Given the negative effects and high incidence of smartphone addiction (Zou et al., 2021), it is essential to uncover the underlying mechanisms, especially the neural mechanisms, by which smartphone addiction affects creative cognition. Creative cognition is defined as the ability to generate original and useful products (Sternberg and Lubart, 1999). It is a core cognitive element that allows for daily flexible problem solving and the generation of new ideas. The main components of creative cognition are (i) overcoming the semantic constraints of existing knowledge, which involves goal-directed behaviour through cognitive control, and (ii) building unusual associations to expand the existing structure of knowledge, which involves the spontaneous and unconstrained generation of novel associations (Ward et al., 1997; Abraham, 2014; Marron and Faust, 2019).

According to the problematic mobile phone use model (Billieux et al., 2015), the lack of planning or reduced cognitive control is a crucial contributor to smartphone addiction behaviour. Previous studies have also indicated that impaired cognitive control is a prominent feature of smartphone addicts, characterised by an inability to focus on task-related information and an inability to suppress dominant, automatic responses (Van Deursen et al., 2015; Li et al., 2021). In fact, previous studies have emphasised the contribution of cognitive control to the generation of creative ideas (Beaty et al., 2016; Benedek and Fink, 2019). During creative idea generation, known ideas are often initially retrieved, which acts as a source of interference allowing the retrieval process to focus on familiar and dominant ideas (Abraham, 2014). In this context, cognitive control is needed to drive the retrieval process of novel and remote information.

Immune checkpoints are a normal part of the immune system. Their function is to prevent an immune response from being so powerful that it destroys healthy cells in the body. Immunotherapy drugs called immune checkpoint inhibitors, such as Keytruda and Opdivo, work by unleashing the immune system’s T cells to attack tumor cells. Their introduction a decade ago marked a major advance in cancer therapy. However, only 10% to 30% of treated patients experience long-term improvement.

Now, scientists at Albert Einstein College of Medicine describe findings that could bolster the effectiveness of immune-checkpoint therapy in a study published in The Journal of Clinical Investigation (JCI) on November 15.

Rather than rally T cells against cancer, the Einstein research team used different human immune cells known as natural killer (NK) cells. Their dramatic results were dramatic. “We believe the novel immunotherapy we’ve developed has great potential to move into clinical trials involving various types of cancer,” said study leader Xingxing Zang, M.Med., Ph.D. He is the Louis Goldstein Swan Chair in Cancer Research and professor of microbiology & immunology, of oncology, of urology, and of medicine at Einstein and a member of the Cancer Therapeutics Program of the Montefiore Einstein Cancer Center.