Toggle light / dark theme

These days when we are struggling with the pandemic, even breathing with peace of mind has become challenging. Especially the form of the mammalian respiratory system, requiring inhalation and exhalation, leaves us more vulnerable to the propagation of viral diseases.

But now, a group of South Korean artists, Bongkyu Song of BKID and Moon&Jeon, has devised a metal lung concept that uses algae to convert carbon dioxide into oxygen. This device named Super Lung is inspired by the respiratory system of birds. Moreover, its designers assert that this concept increases mammalian respiratory efficiency by 300%. But how?

Antibiotics are standard treatments for fighting dangerous bacterial infections. Yet the number of bacteria developing a resistance to antibiotics is increasing. Researchers from Texas A&M University and the University of São Paulo are overcoming this resistance with light.

The researchers tailored antimicrobial (aPDT)—a chemical reaction triggered by visible light—for use on strains. Results showed the treatment weakened to where low doses of current antibiotics could effectively eliminate them.

“Using aPDT in combination with antibiotics creates a synergy of interaction working together for a solution,” said Vladislav Yakovlev, University Professor in the Department of Biomedical Engineering at Texas A&M and co-director of the project. “It’s a step in the right direction against resistant bacteria.”

Summary: Brain organoids are helping researchers map the molecular, genetic, and structural changes that occur during brain development.

Source: ETH Zurich.

The human brain is probably the most complex organ in the entire living world and has long been an object of fascination for researchers. However, studying the brain, and especially the genes and molecular switches that regulate and direct its development, is no easy task.

A team of researchers at Northwestern University has devised a new platform for gene editing that could inform the future application of a near-limitless library of CRISPR-based therapeutics.

Using chemical design and synthesis, the team brought together the Nobel-prize winning technology with therapeutic technology born in their own lab to overcome a critical limitation of CRISPR. Specifically, the groundbreaking work provides a system to deliver the cargo required for generating the gene editing machine known as CRISPR-Cas9. The team developed a way to transform the Cas-9 protein into a spherical nucleic acid (SNA) and load it with critical components as required to access a broad range of tissue and cell types, as well as the intracellular compartments required for gene editing.

The research, published today in a paper titled, “CRISPR Spherical Nucleic Acids,” in the publication Journal of the American Chemical Society, and shows how CRISPR SNAs can be delivered across the cell membrane and into the nucleus while also retaining bioactivity and gene editing capabilities.

NIH researchers reveal new insights on how genetic architecture determines gene expression, tissue-specific function, and disease phenotype in blinding diseases.

National Eye Institute (NEI) scientists have mapped the organization of human retinal cell chromatin. These are the fibers that package 3 billion nucleotide-long DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Editing technology is precise and broadly applicable to all tissues and species.

Scientists at Duke University have developed an RNA

Ribonucleic acid (RNA) is a polymeric molecule similar to DNA that is essential in various biological roles in coding, decoding, regulation and expression of genes. Both are nucleic acids, but unlike DNA, RNA is single-stranded. An RNA strand has a backbone made of alternating sugar (ribose) and phosphate groups. Attached to each sugar is one of four bases—adenine (A), uracil (U), cytosine ©, or guanine (G). Different types of RNA exist in the cell: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).