Toggle light / dark theme

This video explains discovery of DNA.

DNA was discovered in 1,869 by German researcher Friedrich Miescher, who was originally trying to study the composition of lymphoid cells (white blood cells). Instead, he isolated a new molecule he called nuclein (DNA with associated proteins) from a cell nucleus.

Thank You For Watching.
Please Like And Subscribe to Our Channel: https://www.youtube.com/EasyPeasyLearning.
Like Our Facebook Page: https://www.facebook.com/learningeasypeasy/
Join Our Facebook Group: https://www.facebook.com/groups/460057834950033
Support Our Channel: https://www.patreon.com/supereasypeasy

Osaka University researchers discovered that worms may be coated with hydrogel sheaths that contain useful cargo such as anti-cancer medications

James Bond’s famed quartermaster Q provided the secret agent with an unlimited supply of equipment and gadgets to aid him on his missions. Now, scientists from Japan have shown that they are equally adept in providing microscopic worms with a surprising variety of useful and protective components.

Researchers from Osaka University have discovered that microscopic, free-living worms known as nematodes may be coated with hydrogel-based “sheaths” that can be further customized to transport functional cargo.

Learn More.

The Neuro-Network.

#Fetal #Brain begin to #experience #pain #neuroscience #science #Biology #consciousness


Context Proposed federal legislation would require physicians to inform women seeking abortions at 20 or more weeks after fertilization that the fetus feels pain and to offer anesthesia administered directly to the fetus. This article examines whether a fetus feels pain and if so, whether safe and effective techniques exist for providing direct fetal anesthesia or analgesia in the context of therapeutic procedures or abortion.

Evidence Acquisition Systematic search of PubMed for English-language articles focusing on human studies related to fetal pain, anesthesia, and analgesia. Included articles studied fetuses of less than 30 weeks’ gestational age or specifically addressed fetal pain perception or nociception. Articles were reviewed for additional references. The search was performed without date limitations and was current as of June 6, 2005.

Receptors found on cell surfaces bind to hormones, proteins, and other molecules, helping cells respond to their environment. MIT chemists have now discovered how one of these receptors changes its shape when it binds to its target, and how those changes trigger cells to grow and proliferate.

This receptor, known as (EGFR), is overexpressed in many types of cancer and is the target of several cancer drugs. These drugs often work well at first, but tumors can become resistant to them. Understanding the mechanism of these receptors better may help researchers design drugs that can evade that resistance, says Gabriela Schlau-Cohen, an associate professor of chemistry at MIT.

“Thinking about more general mechanisms to target EGFR is an exciting new direction, and gives you a new avenue to think about possible therapies that may not evolve resistance as easily,” she says.

A multi-institutional collaboration, which includes the U.S. Department of Energy’s (DOE) Argonne National Laboratory, has created a material that can be used to create computer chips that can do just that. It achieves this by using so-called “neuromorphic” circuitry and computer architecture to replicate brain functions. Purdue University professor Shriram Ramanathan led the team.

“Human brains can actually change as a result of learning new things,” said Subramanian Sankaranarayanan, a paper co-author with a joint appointment at Argonne and the University of Illinois Chicago. “We have now created a device for machines to reconfigure their circuits in a brain-like way.”

With this capability, artificial intelligence-based computers might do difficult jobs more quickly and accurately while using a lot less energy. One example is analyzing complicated medical images. Autonomous cars and robots in space that might rewire their circuits depending on experience are a more futuristic example.

When it comes to our state of mind and emotions, our faces can be quite telling. Facial expression is an essential aspect of nonverbal communication in humans. Even if we cannot explain how we do it, we can usually see in another person’s face how they are feeling. In many situations, reading facial expressions is particularly important. For example, a teacher might do it to check if their students are engaged or bored, and a nurse may do it to check if a patient’s condition has improved or worsened.

Thanks to advances in technology, computers can do a pretty good job when it comes to recognizing faces. Recognizing facial expressions, however, is a whole different story. Many researchers working in the field of artificial intelligence (AI) have tried to tackle this problem using various modeling and classification techniques, including the popular convolutional (CNNs). However, facial expression recognition is complex and calls for intricate neural networks, which require a lot of training and are computationally expensive.

In an effort to address these issues, a research team led by Dr. Jia Tian from Jilin Engineering Normal University in China has recently developed a new CNN model for facial expression recognition. As described in an article published in the Journal of Electronic Imaging, the team focused on striking a good balance between the training speed, memory usage, and recognition accuracy of the model.

For many years, the human genome was seen as a book of life, with passages of remarkable eloquence and economy of expression intermingled with long stretches of nonsense. The readable areas carried the instructions for producing cell proteins; the other regions, which accounted for around 90% of the overall genome, were disregarded as junk DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

What happens when you CRISPR people?

Few questions generated more contentious discussion in biotech in the mid-2010s, as researchers and executives debated the relative merits of preclinical studies that pointed both to the new gene-editing tool’s potential to cure numerous diseases and its potential to cause unintended genetic damage.