Toggle light / dark theme

ELIZABETHTOWN, Ky. (AP) — When Chastity Murry had her first psychotic break, she went into her bathroom and downed a whole bottle of pills, hoping to die. Her teenage daughter had to perform CPR to save her life.

Around that same time more than a decade ago, the man who would become her husband, Dante Murry, also lost touch with reality and considered suicide.

Different illnesses led them down similar paths – bipolar disorder in her case and schizoaffective disorder in his – conditions long considered by many to be distinct and unrelated.

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Bristle Discount Link (Oral microbiome quantification):
ConquerAging15
https://www.bmq30trk.com/4FL3LK/GTSC3/

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Quantify Discount Link (At-Home Blood Testing)
https://getquantify.io/mlustgarten.

Cronometer Discount Link (Daily diet tracking):
https://shareasale.com/r.cfm?b=1390137&u=3266601&m=61121&urllink=&afftrack=

Support the channel with Buy Me A Coffee!

Brain tumors are among the most deadly and difficult-to-treat cancers. Glioblastoma, a particularly aggressive form, kills more than 10,000 Americans a year and has a median survival time of less than 15 months.

For patients with brain tumors, treatment typically includes open-skull surgery to remove as much of the tumor as possible followed by chemotherapy or radiation, which come with serious side effects and numerous hospital visits.

What if a patient’s brain tumor could be treated painlessly, without anesthesia, in the comfort of their home? Researchers at Stanford Medicine have developed, and tested in mice, a small wireless device that one day could do just that. The device is a remotely activated implant that can heat up nanoparticles injected into the tumor, gradually killing cancerous cells.

The CRISPR system, which involves a Cas enzyme to cut DNA, is a powerful tool for gene editing. But the genetic scissors sometimes make changes at the wrong place, creating a major safety problem that could limit their therapeutic use.

Now, scientists at the University of Texas (UT) at Austin have refined the Cas9 protein used in the Nobel Prize-winning CRISPR-Cas9 tool. The new version, dubbed SuperFi-Cas9, was thousands of times less likely to perform off-target editing but just as efficient at on-target editing as the original version, the team said in a paper published in Nature.

“This really could be a game-changer in terms of a wider application of the CRISPR-Cas systems in gene editing,” Kenneth Johnson, Ph.D., the study’s co-senior author, said in a statement.

Researchers at Europe’s science lab CERN, who regularly use particle physics to challenge our understanding of the universe, are also applying their craft to upend the limits to cancer treatment.

The physicists here are working with giant particle accelerators in search of ways to expand the reach of cancer radiation therapy, and take on hard-to-reach tumours that would otherwise have been fatal.

In one CERN lab, called CLEAR, facility coordinator Roberto Corsini stands next to a large, linear particle accelerator consisting of a 40-metre metal beam with tubes packed in aluminium foil at one end, and a vast array of measurement instruments and protruding colourful wires and cables.

The wearable robot helps patients who are afraid of needles.

A recent study in Japan has revealed that a hand-held soft robot can improve the experience of patients while undergoing medical treatments, such as injections and other unpleasant therapies or immunizations.


Inspired by vaccinations during Covid

The research was inspired in part by the numerous needles people had to endure while being vaccinated against Covid-19. Some people had an aversion to these needles, which led to less people getting vaccinated, reducing the rates. Although there have been numerous studies explaining patients’ pain and anxiety during treatment, there have been few solutions studied or discussed to help patients.

Engineers at Duke University have developed a novel delivery system for cancer treatment and demonstrated its potential against one of the disease’s most troublesome forms. In newly published research in mice with pancreatic cancer, the scientists showed how a radioactive implant could completely eliminate tumors in the majority of the rodents, demonstrating what they say is the most effective treatment ever studied in these pre-clinical models.

Pancreatic cancer is notoriously difficult to diagnose and treat, with tumor cells of this type highly evasive and loaded with mutations that make them resistant to many drugs. It accounts for just 3.2 percent of all cancers, yet is the third leading cause of cancer-related death. One way of tackling it is by deploying chemotherapy to hold the tumor cells in a state that makes them vulnerable to radiation, and then hitting the tumor with a targeted radiation beam.

But doing so in a way that attacks the tumor but doesn’t expose the patient to heavy doses of radiation is a fine line to tread, and raises the risk of severe side effects. Another method scientists are exploring is the use of implants that can be placed directly inside the tumor to attack it with radioactive materials from within. They have made some inroads using titanium shells to encase the radioactive samples, but these can cause damage to the surrounding tissue.

Alzheimer’s disease (AD) is a debilitating progressive illness that begins with mild memory loss and slowly destroys cognitive function and memory. It currently has no cure and is predicted to affect over 100 million people worldwide by 2050. In the United States, AD is the leading cause of dementia in older adults and the 7th most common cause of death, according to the National Institute on Aging.

Ongoing Alzheimer’s research is focused on two key neurotoxic proteins: amyloid beta (Aβ) and tau. Although these proteins have been shown to be associated with AD, the levels of Aβ and tau do not consistently explain or correlate with the severity of cognitive decline for some people with the disease.

Investigators at Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, set out to identify other proteins that may be directly involved with fundamental aspects of AD, like synaptic loss and neurodegeneration. They exposed laboratory neurons to human brain extracts from about 40 people who either had AD, were protected from AD despite having high Aβ and tau levels, or were protected from AD with little or no Aβ and tau in their brains.