Toggle light / dark theme

Circa 2017 face_with_colon_three


To demonstrate this, researchers stored historic audio recordings on these molecules for the first time and then retrieved them with 100 percent accuracy. The experiment showed that DNA not only offers a place to save a dense package of information in a tiny space, but because it can last for hundreds of years, it reduces the risk that it will go out of date or degrade in the way that cassette tapes, compact discs, and even computer hard drives can.

“DNA is intrinsically and exquisitely a stable molecule,” Emily Leproust, CEO of the biotech firm Twist Bioscience, which works on DNA synthesis, told Seeker. Her company collaborated with Microsoft, the University of Washington, and the Montreux Jazz Digital Project on the DNA data feat.

The two performances they stored and retrieved, “Smoke on the Water” by Deep Purple and “Tutu” by Miles Davis, are the first DNA-saved files to be added to UNESCO’s Memory of the World Archive, a collection of audio and visual pieces of cultural significance. Both were performed at the Montreux Jazz Festival, an annual event in Switzerland.

Circa 2018 face_with_colon_three


Since the time of Hippocrates and Herophilus, scientists have placed the location of the mind, emotions and intelligence in the brain. For centuries, this theory was explored through anatomical dissection, as the early neuroscientists named and proposed functions for the various sections of this unusual organ. It wasn’t until the late 19th century that Camillo Golgi and Santiago Ramón y Cajal developed the methods to look deeper into the brain, using a silver stain to detect the long, stringy cells now known as neurons and their connections, called synapses.

Today, neuroanatomy involves the most powerful microscopes and computers on the planet. Viewing synapses, which are only nanometers in length, requires an electron microscope imaging a slice of brain thousands of times thinner than a sheet of paper. To map an entire human brain would require 300,000 of these images, and even reconstructing a small three-dimensional brain region from these snapshots requires roughly the same supercomputing power it takes to run an astronomy simulation of the universe.

Fortunately, both of these resources exist at Argonne, where, in 2015, Kasthuri was the first neuroscientist ever hired by the U.S. Department of Energy laboratory. Peter Littlewood, the former director of Argonne who brought him in, recognized that connectome research was going to be one of the great big data challenges of the coming decades, one that UChicago and Argonne were perfectly poised to tackle.

Circa 2017 face_with_colon_three


A new device developed at The Ohio State University can start healing organs in a “fraction of a second,” researchers say.

The technology, known as Tissue Nanotransfection (TNT), has the potential to save the lives of car crash victims and even deployed soldiers injured on site. It’s a dime-sized silicone chip that “injects genetic code into skin cells, turning those skin cells into other types of cells required for treating diseased conditions,” according to a release.

In lab tests, one touch of TNT completely repaired injured legs of mice over three weeks by turning skin cells into vascular cells.

A classic thought experiment in the philosophy of mind is reduplication, in which a person (or her mind) is duplicated such that two or more descendant people of shared mental ancestry now exist where previously there was one. The philosophical quandary is to resolve what happened to the original person’s identity. Did she survive and if so, in which of the resulting people’s minds? Which of the two resulting people is the original and which is a mere copy of denigrated identity status? Alternatively, is there something fundamentally wrong with the wording of such questions, such that we should we adopt a different perspective on the nature of personal identity that offers alternative solutions to the reduplication quandary? Reduplication further arises not only in abstract philosophical musings, but also in the futuristic and variously conceivable (depending on the reader’s tastes), technology of mind uploading, in which a person’s physical brain is emulated via the technology of whole brain emulation. While mind uploading might produce a single result, such as if the original brain is destroyed by the uploading process and only one upload is created, we can also conceive of either nondestructive scenarios (in which the original brain is not destroyed) or scenarios that produce multiple uploads. Either case results in multiple descendant minds, each operating in distinct physical systems (brains or cloned brains, or computers of some sort). The philosophy of personal identity has produced several possible stances on the nature of personal identity. The most popular are body identity and psychological identity, with other options including closest continuer identity, space-time worm identity and branching identity. However, there is always room for new theories to enter the discussion. The way in which blockchains work, and Bitcoin’s mining process and protocol for handling orphaned blocks, suggests a new theory of identity along with a new solution to the reduplication problem. The proposed blockchain solution to personal identity has applications to the handling of the reduplication problem as it may arise during a futuristic mind uploading procedure.

A blockchain holds a hashed transaction ledger, essentially the history of all transactions encoded to prevent any subsequent alteration of the history. In this way, all transactions back to the beginning of the ledger’s history can be confirmed by any interested party. Deceit, fraud, and other attempts to undermine the history simply don’t work, and consequently blockchains enable a variety of interactions with the currently most popular being digital currency. In addition to more conventional applications, blockchains could also be used to assign identity status (original or copy) to the descendent minds of a mind uploading procedure. Each descendant could then venture out into the world confident that their identity status will be honored by all third parties thereafter. Let us call this the blockchain theory of personal identity.

Alector, a clinical-stage biotechnology company pioneering immuno-neurology and innate immuno-oncology, has announced the initiation of the first-in-human Phase 1 trial of AL044. The study is investigating the safety profile, pharmacokinetics (PK), pharmacodynamics (PD) and target engagement of AL044 in healthy adults.

Longevity. Technology: Headquartered in South San Francisco, California, Alector is aiming to develop an unmatched pipeline of novel potential medicines based on insights into immunology, neurology and human genetics. The company’s therapeutic candidates are intended to harness the body’s innate power to heal itself, and Alector is pioneering immuno-neurology, a novel therapeutic approach for the treatment of neurodegenerative diseases, and innate immuno-oncology.

Immuno-neurology targets immune dysfunction as a root cause of multiple pathologies that are drivers of degenerative brain disorders. Alector has discovered, and is developing, a broad portfolio of innate immune system programs, designed to functionally repair genetic mutations that cause dysfunction of the brain’s immune system and enable rejuvenated immune cells to counteract emerging brain pathologies. Alector’s immuno-neurology product candidates are supported by biomarkers and target genetically defined patient populations in frontotemporal dementia and Alzheimer’s disease.

Real-world data (and real-world evidence) can also play roles outside of public health emergencies like Covid and monkeypox. They can help determine the long-term effectiveness of many treatments, especially those subject to the expedited approval process, such as those used for rare diseases, and can help determine the value of drugs in general. In many cases, clinical trials are not enough to understand how well drugs really work. Janet Woodcock, the director of the FDA’s Center for Drug Evaluation and Research, has said that the clinical trial system is “broken” and that more use of real-world evidence could be an effective addition to the approval process.

The FDA has been taking steps toward using more real-world data outside of public health emergencies like Covid and monkeypox. In 2018, the agency issued guidance for use of such evidence in approving drugs. By 2021, when the FDA issued enhanced guidance on the topic, real-world evidence had been used in approving 90 medical devices and the new use of a drug, Prograf. But this is not happening enough in practice.

Failing to use real-world data means missing out not just on better understanding of the effectiveness of individual drugs but also on a chance to improve the entire pharmaceutical sector, including addressing issues like rising costs. The availability of more data on real-world outcomes from using drugs, especially gene therapies and other innovative and often very expensive treatments, would pave the way for pricing to take patient outcomes into account through approaches like value-based contracting, when health insurers base drug prices on how well drugs work in the people who take them, rather than just in premarket clinical trials.

Summary: Pain-sensing neurons in the put secrete substance P, a molecule that protects against gut inflammation and tissue damage by boosting specific microbes in the gut. In people with inflammatory bowel disease, the pain-sensing neurons are diminished and there are significant disruptions in pain-signaling genes.

Source: Weill Cornell University.

Neurons that sense pain protect the gut from inflammation and associated tissue damage by regulating the microbial community living in the intestines, according to a study from researchers at Weill Cornell Medicine.

Inspired by the way termites build their nests, scientists at the California Institute of Technology (Caltech) developed a framework to design new materials that mimic the fundamental rules hidden in nature’s growth patterns. The researchers demonstrated that by using these rules, it is possible to create materials designed with specific programmable properties.

The research was published in the journal Science on August 26. It was led by Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics and Heritage Medical Research Institute Investigator.

“Termites are only a few millimeters in length, but their nests can stand as high as 4 meters—the equivalent of a human constructing a house the height of California’s Mount Whitney,” says Daraio. If you peer inside a termite nest you will see a network of asymmetrical, interconnected structures, similar to the interior of a sponge or a loaf of bread. Made of sand grains, dirt, dust, saliva, and dung, this disordered, irregular structure appears arbitrary. However, a termite nest is specifically optimized for stability and ventilation.