Toggle light / dark theme

MUSC Hollings Cancer Center researcher Ashish Deshmukh, Ph.D., has identified a dramatic recent rise in cervical cancer incidence among women in their early 30s. This work was published Nov. 21 in the Journal of the American Medical Association (JAMA).

Cervical cancer is mostly related to human papillomavirus (HPV), and has made this cancer preventable. Yet, it is estimated that over 14,000 new cases will be diagnosed this year and more than 4,000 deaths will be attributed to .

“HPV is a group of over 200 viruses. At least 14 high-risk HPV types can cause several types of cancers, including cervical, anal and head and neck cancers. In the era of the overall decline in cancer incidence, cancers caused by HPV are unfortunately rising,” said Deshmukh, an associate professor in the Department of Public Health Sciences at MUSC.

In a recent study published in Cancer Cell, researchers assessed several approaches for a circulating cell-free deoxyribonucleic acid (cfDNA)-based multi-cancer early detection (MCED) test. Defining the clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF) enables the comparison of different approaches.

An MCED test is a blood test that helps early detection of a shared cancer signal across multiple cancers using blood samples. Currently, available MCED tests have a low false-positive rate of less than 1%.

Washington, Scientists have found a novel immunotherapy that could bolster the effectiveness of cancer treatment, according to a study. Rather than rally T cells against cancer, scientists have used different human immune cells called natural killer (NK) cells as a novel means to fight cancer, according to a study.

The team of scientists at Albert Einstein College of Medicine described findings that could boost the impact of immune-checkpoint therapy, the study said. Findings have been published in The Journal of Clinical Investigation (JCI).

Immune checkpoint inhibitors such as Keytruda and Opdivo work by unleashing the immune system’s T cells to attack tumour cells. Their introduction a decade ago marked a major advance in cancer therapy, but only 10 per cent to 30 per cent of treated patients experience long-term improvement, the study said.

Triple threat. Tripledemic. A viral perfect storm. These frightening phrases have dominated recent headlines as some health officials, clinicians, and scientists forecast that SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) could surge at the same time in Northern Hemisphere locales that have relaxed masking, social distancing, and other COVID-19 precautions.

But a growing body of epidemiological and laboratory evidence offers some reassurance: SARS-CoV-2 and other respiratory viruses often “interfere” with each other. Although waves of each virus may stress emergency rooms and intensive care units, the small clique of researchers who study these viral collisions say there is little chance the trio will peak together and collectively crash hospital systems the way COVID-19 did at the pandemic’s start.

“Flu and other respiratory viruses and SARS-CoV-2 just don’t get along very well together,” says virologist Richard Webby, an influenza researcher at St. Jude Children’s Research Hospital. “It’s unlikely that they will circulate widely at the same time.”

A researcher at the University of Houston College of Pharmacy is reporting an effective protocol for reprogramming human heart cells into specialized cells that conduct electricity throughout the heart to enable rhythmic heartbeat and repair diseased hearts. Bradley McConnell, professor of pharmacology, is the first to demonstrate the process and is reporting it in iScience.

It could be a massive breakthrough.

Currently, there are no treatments for cardiac cell death, the underlying basis of cardiovascular disease (CVD), which remains the leading cause of death globally. By 2035, CVD prevalence is expected to increase to 45.1% (more than 130 million people) in the U.S. while the financial cost is projected to increase by more than $131 million over the next two decades, reaching an astounding $1.1 trillion.

Research in the field continues to focus on seizure prevention, prediction and treatment. Dr. Van Gompel predicts that the use of artificial intelligence and machine learning will help neurologists and neurosurgeons continue to move toward better treatment options and outcomes.

“I think we will continue to move more and more toward removing less and less brain,” says Dr. Van Gompel. “And in fact, I do believe in decades, we’ll understand stimulation enough that maybe we’ll never cut out brain again. Maybe we’ll be able to treat that misbehaving brain with electricity or something else. Maybe sometimes it’s drug delivery, directly into the area, that will rehabilitate that area to make it functional cortex again. That’s at least our hope.”

On the Mayo Clinic Q&A podcast, Dr. Van Gompel discusses the latest treatment options for epilepsy and what’s on the horizon in research.

Greg Bear, the affable San Diego native who wrote such highly acclaimed and plausible science fiction novels as “Blood Music,” “Darwin’s Radio” and “Eon” and who helped create San Diego Comic-Con, died Saturday in Seattle. He was 71.


His books included “Blood Music” and “Darwin’s Radio,” which helped establish him as a “hard” sci-writer who created plausible tales with the help of scientists.

He has surpassed every medical expectation throughout his recovery. Gretarsson can now walk his dog, brush his teeth and give high-fives — as demonstrated when he met Iceland’s president.

“I have feelings in every finger, in the hand,” Gretarsson said recently alongside his wife, Silvia, Friday on “Good Morning Britain.”

Of course, recovery has been a complicated one.