Toggle light / dark theme

For nearly two decades, astrophysicists have believed that long gamma-ray bursts (GRBs) resulted solely from the collapse of massive stars. Now, a new study upends that long-established and long-accepted belief.

Led by Northwestern University.

Established in 1,851, Northwestern University (NU) is a private research university based in Evanston, Illinois, United States. Northwestern is known for its McCormick School of Engineering and Applied Science, Kellogg School of Management, Feinberg School of Medicine, Pritzker School of Law, Bienen School of Music, and Medill School of Journalism.

Scientists have discovered that an inflammatory cytokine known as LIGHT is a major factor in the deadly airway damage that can affect people with severe asthma. This research has suggested that such airway damage could be reversed by therapeutics that halt LIGHT, and the molecule could offer a way to treat asthma. The study, which used a mouse model and human tissue, has been reported in the Journal of Allergy and Clinical Immunology.

“This is a very, very significant finding,” said senior study author and LJI Professor Michael Croft, Ph.D. “This research gives us a better understanding of the potential of therapeutic targeting of LIGHT and what we might do to relieve some of the symptoms and some of the inflammatory features seen in patients who have severe asthma.”

Scientists at the University of California, San Francisco (UCSF) have engineered molecules that act like “cellular glue,” allowing them to direct in precise fashion how cells bond with each other. The discovery represents a major step toward building tissues and organs, a long-sought goal of regenerative medicine.

Adhesive molecules are found naturally throughout the body, holding its tens of trillions of cells together in highly organized patterns. They form structures, create neuronal circuits, and guide immune cells to their targets. Adhesion also facilitates communication between cells to keep the body functioning as a self-regulating whole.

In a new study, published in the December 12, 2022, issue of Nature, researchers engineered cells containing customized adhesion molecules that bound with specific partner cells in predictable ways to form complex multicellular ensembles.

Lupin Pharmaceuticals issued a voluntary recall of some blood pressure medication due to the potential presence of a nitrosamine impurity, according to a notice published on the Food and Drug Administration’s (FDA) website.

The recall, issued last week, includes one batch of 20-milligram Quinapril Tablets USP — G102929 — and three batches of 40-milligram Quinapril Tablets USP – G100533, G100534 and G203071, the notice said.

Consumers, wholesalers, distributors and retailers can find the lot number on the side of the label affixed to bottles.

Researchers have found a new way to kill cancer cells by using artificial DNA which could pave the way for a cure for the disease in the future. The existing methods of treating cancer have their limitations, however, scientists believe that RNA and DNA-based drugs could potentially help beat the deadly disease.

The findings published in the Journal of the American Chemical Society, last week, show that the researchers at the University of Tokyo have used the chemically synthesised, hairpin-shaped, cancer-killing DNA to target and kill human cervical cancer and breast cancer-derived cells. The DNA pairs were also used against malignant melanoma cells in mice.

The team of researchers at the University of Tokyo, led by Assistant Professor Kunihiko Morihiro and Professor Akimitsu Okamoto from the Graduate School of Engineering, indicated that they were inspired to move away from conventional anti-cancer drug treatments by using artificial DNA.

Immunotherapy is a type of drug that might be an option if you have triple-negative breast cancer.

Triple-negative breast cancer, also called basal-like breast cancer, is not sensitive to hormones. This means that the breast cancer cells don’t use estrogen or progesterone to grow and they don’t have hormone receptors. This type of breast cancer also doesn’t produce too much of the growth-promoting protein called HER2.

“Triple-negative breast cancer is about 10% to 15% of all breast cancer cases,” says Pooja Advani, M.D., a medical oncologist with the Robert and Monica Jacoby Center for Breast Health at Mayo Clinic in Florida.

Although genetically modified foods still get a bit of a bad rap, there are actually many good reasons why modifying an organism’s genetics may be worthwhile. For example, many breeds of genetically modified foods have made them more resistant to disease.

It’s also possible to modify foods to make them more nutritious. Take, for example, golden rice. This grain was engineered to have higher levels of vitamin A in order to tackle deficiencies of this nutrient in impoverished countries.


A purple tomato, created using genetic modification, may be available to buy in the U.S. as soon as 2023.

PITTSBURGH — A group of neuroscientists led by a University of Pittsburgh School of Medicine researcher developed a test to detect a novel marker of Alzheimer’s disease neurodegeneration in a blood sample. A study on their results was published today in Brain.

The biomarker, called “brain-derived tau,” or BD-tau, outperforms current blood diagnostic tests used to detect Alzheimer’s-related neurodegeneration clinically. It is specific to Alzheimer’s disease and correlates well with Alzheimer’s neurodegeneration biomarkers in the cerebrospinal fluid (CSF).


A group of neuroscientists led by a Pitt School of Medicine researcher developed a test to detect a novel marker of Alzheimer’s disease neurodegeneration in a blood sample.