Former Neuralink president Max Hodak’s new BCI startup relies on photonics to send light through a patient’s optic nerve and transmit information.
Category: biotech/medical – Page 1,053
The global COVID-19 epidemic has spread rapidly around the world and caused the death of more than 5 million people. It is urgent to develop effective strategies to treat COVID-19 patients. Here, we revealed that SARS-CoV-2 infection resulted in the dysregulation of genes associated with NAD+ metabolism, immune response, and cell death in mice, similar to that in COVID-19 patients. We therefore investigated the effect of treatment with NAD+ and its intermediate (NMN) and found that the pneumonia phenotypes, including excessive inflammatory cell infiltration, hemolysis, and embolization in SARS-CoV-2-infected lungs were significantly rescued. Cell death was suppressed substantially by NAD+ and NMN supplementation. More strikingly, NMN supplementation can protect 30% of aged mice infected with the lethal mouse-adapted SARS-CoV-2 from death.
A new technology developed at Tel Aviv University makes it possible to destroy cancerous tumors in a targeted manner, via a combination of ultrasound and the injection of nanobubbles into the bloodstream. According to the research team, unlike invasive treatment methods or the injection of microbubbles into the tumor itself, this latest technology enables the destruction of the tumor in a non-invasive manner.
The study was conducted under the leadership of doctoral student Mike Bismuth from the lab of Dr. Tali Ilovitsh at Tel Aviv University’s Department of Biomedical Engineering, in collaboration with Dr. Dov Hershkovitz of the Department of Pathology. Prof. Agata Exner from Case Western Reserve University in Cleveland also participated in the study. The study was published in the journal Nanoscale.
Dr. Tali Ilovitsh says that their “new technology makes it possible, in a relatively simple way, to inject nanobubbles into the bloodstream, which then congregate in the area of the cancerous tumor. After that, using a low-frequency ultrasound, we explode the nanobubbles, and thereby the tumor.”
Circa 2020 face_with_colon_three
Liquid metals are a promising functional material due to their unique combination of metallic properties and fluidity at room temperature. They are of interest in wide-ranging fields including stretchable and flexible electronics, reconfigurable devices, microfluidics, biomedicine, material synthesis, and catalysis. Transformation of bulk liquid metal into particles has enabled further advances by allowing access to a broader palette of fabrication techniques for device manufacture or by increasing area available for surface-based applications. For gallium-based liquid metal alloys, particle stabilization is typically achieved by the oxide that forms spontaneously on the surface, even when only trace amounts of oxygen are present. The utility of the particles formed is governed by the chemical, electrical, and mechanical properties of this oxide. To overcome some of the intrinsic limitations of the native oxide, it is demonstrated here for the first time that 2D graphene-based materials can encapsulate liquid metal particles during fabrication and imbue them with previously unattainable properties. This outer encapsulation layer is used to physically stabilize particles in a broad range of pH environments, modify the particles’ mechanical behavior, and control the electrical behavior of resulting films. This demonstration of graphene-based encapsulation of liquid metal particles represents a first foray into the creation of a suite of hybridized 2D material coated liquid metal particles.
Circa 2020 face_with_colon_three
UNSW researchers have overcome a major design challenge on the path to controlling the dimensions of so-called DNA nanobots—structures that assemble themselves from DNA components.
Self-assembling nanorobots may sound like science fiction, but new research in DNA nanotechnology has brought them a step closer to reality. Future nanobot use cases won’t just play out on the tiny scale, but include larger applications in the health and medical field, such as wound healing and unclogging of arteries.
Researchers from UNSW, with colleagues in the UK, have published a new design theory in ACS Nano on how to control the length of self-assembling nanobots in the absence of a mould, or template.
Circa 2020 face_with_colon_three
Light-activated molecular nanomachines (MNMs) can be used to drill holes into prokaryotic (bacterial) cell walls and the membrane of eukaryotic cells, including mammalian cancer cells, by their fast rotational movement, leading to cell death. We examined how these MNMs function in multicellular organisms and investigated their use for treatment and eradication of specific diseases by causing damage to certain tissues and small organisms. Three model eukaryotic species, Caenorhabditis elegans, Daphnia pulex, and Mus musculus (mouse), were evaluated. These organisms were exposed to light-activated fast-rotating MNMs and their physiological and pathological changes were studied in detail. Slow rotating MNMs were used to control for the effects of rotation rate. We demonstrate that fast-rotating MNMs caused depigmentation and 70% mortality in C.
Researchers have discovered the human brain’s enhanced processing power may stem from differences in the structure and function of our neurons. Credit: Queensland Brain Institute / Professor Stephen Williams.
The human brain’s function is remarkable, driving all aspects of our creativity and thoughts. However, the neocortex, a region of the human brain responsible for these cognitive functions, has a similar overall structure to other mammals.
Researchers from The University of Queensland (UQ), The Mater Hospital, and the Royal Brisbane and Women’s Hospital have shown that changes in the structure and function of our neurons may be the cause of the human brain’s increased processing power.
Unusual types of DNA.
In very rare cases, some people may be carrying two completely different sets of DNA and are unaware of it.
This supposed vampire’s bones were discovered and now scientists have reconstructed what his face would have looked like.
The experiments demonstrated that the blood cells can sense when the environment outside the capillaries is low in oxygen – which occurs when neurons take up more oxygen to generate energy – and respond by rushing to deliver more. They also observed that this response if very rapid, occurring less than a second after oxygen is pulled out of the surrounding tissue.
This phenomenon is unique to the capillaries because of their size. The thin walls of the microvessels mean that the oxygen levels in adjacent brain tissue are mirrored within the capillaries, which can signal to red blood cells to spring into action.
The findings could have implications for a number of neurological disorders, including Alzheimer’s disease. It has been observed that blood flow in the brains of people with the disorder is impaired when compared to healthy brains. The difficulty in delivering the oxygen necessary for neuronal activity may help explain the cognitive difficulties that are one of the hallmarks of the disease.