Toggle light / dark theme

Digital Twin Approaches Enabled by Cutting-Edge Brain Modelling Advances

Summary: Using a new technology called The Virtual Brain, researchers are able to create personalized computerized brain models of individual patients based on their anatomy, structural connectivity, and brain dynamics.

Source: Human Brain Project.

In the current edition of The Lancet Neurology, researchers of the Human Brain Project (HBP) present the novel clinical uses of advanced brain modeling methods.

How cell mechanics influences everything

“People study cells in the context of their biology and biochemistry, but cells are also simply physical objects you can touch and feel,” Guo says. “Just like when we construct a house, we use different materials to have different properties. A similar rule must apply to cells when forming tissues and organs. But really, not much is known about this process.”

His work in cell mechanics led him to MIT, where he recently received tenure and is the Class of ’54 Career Development Associate Professor in the Department of Mechanical Engineering.

At MIT, Guo and his students are developing tools to carefully poke and prod cells, and observe how their physical form influences the growth of a tissue, organism, or disease such as cancer. His research bridges multiple fields, including cell biology, physics, and mechanical engineering, and he is working to apply the insights from cell mechanics to engineer materials for biomedical applications, such as therapies to halt the growth and spread of diseased and cancerous cells.

Engineering breakthrough in softbotics

“Introducing the first soft material that can maintain a high enough electrical conductivity to support power hungry devices.” and self-healing.


The newest development in softbotics will have a transformative impact on robotics, electronics, and medicine. Carmel Majidi has engineered a soft material with metal-like conductivity and self-healing properties that, for the first time, can support power-hungry devices.

“Softbotics is about seamlessly integrating robotics into everyday life, putting humans at the center,” explained Majidi, a professor of mechanical engineering.

Engineers work to integrate robots into our everyday lives with the hope of improving our mobility, health, and well-being. For example, patients might one day recover from surgery at home thanks to a wearable robot monitoring aid. To integrate robots seamlessly, they need to be able to move with us, withstand damage, and have electrical functionality without being encased in a hard structure.

New CRISPR tool reversed blindness in mice — permanently

A new CRISPR tool corrected a genetic mutation that causes vision loss, in an experiment in mice — and its creators at the Wuhan University of Science and Technology (WUST) in China think it could be a safe way to treat countless other genetic diseases in people.

The challenge: Vision starts with light entering the eye and traveling to the retina. There, light-sensitive cells, called photoreceptors, convert light into electrical signals that are sent to the brain.

Retinitis pigmentosa is a rare — and, currently, incurable — genetic disease that can be caused by mutations in more than 100 different genes. These mutations destroy the cells of the retina, leading to vision loss, and for most people, there’s no way to stop the disease or reverse its damage (the exception is a gene therapy approved to treat mutations in the RPE65 gene).

How We’re Reverse Engineering the Human Brain in the Lab | Sergiu P. Pasca | TED

Neuroscientist Sergiu P. Pasca has made it his life’s work to understand how the human brain builds itself — and what makes it susceptible to disease. In a mind-blowing talk laden with breakthrough science, he shows how his team figured out how to grow “organoids” and what they call brain “assembloids” — self-organizing clumps of neural tissue derived from stem cells that have shown the ability to form circuits — and explains how these miniature parts of the nervous system are bringing us closer to demystifying the brain.

If you love watching TED Talks like this one, become a TED Member to support our mission of spreading ideas: http://ted.com/membership.

Follow TED!
Twitter: http://twitter.com/TEDTalks.
Instagram: https://www.instagram.com/ted.
Facebook: http://facebook.com/TED
LinkedIn: https://www.linkedin.com/company/ted-conferences.
TikTok: https://www.tiktok.com/@tedtoks.

The TED Talks channel features talks, performances and original series from the world’s leading thinkers and doers. Subscribe to our channel for videos on Technology, Entertainment and Design — plus science, business, global issues, the arts and more. Visit http://TED.com to get our entire library of TED Talks, transcripts, translations, personalized talk recommendations and more.

Watch more: https://go.ted.com/sergiuppasca.

Advancements in understanding and treating breast cancer

In a recent study published in the journal Cell, researchers describe recent advancements in breast cancer research and how these findings have improved the precise diagnosis of tumor subtypes and contributed to the discovery of novel drug targets for future therapeutics.

Study: Deciphering breast cancer: from biology to the clinic. Image Credit: ORION PRODUCTION / Shutterstock.com

Integrated structural biology provides new clues for cystic fibrosis treatment

Scientists at St. Jude Children’s Research Hospital and Rockefeller University have combined their expertise to gain a better understanding of the cystic fibrosis transmembrane conductance regulator (CFTR). Mutations in CFTR cause cystic fibrosis, a fatal disease with no cure.

Current therapies using a drug called a potentiator can enhance CFTR functions in some patients; but how the potentiators work is not well understood. The new findings reveal how CFTR functions mechanistically and how disease mutations and potentiators affect those functions. With this information, researchers may be able to design more effective therapies for cystic fibrosis. The study was published today in Nature.

Cystic fibrosis is a genetic disorder that causes people to produce mucus that is too thick and sticky. This can block airways and lead to lung damage as well as cause problems with digestion. The disease affects about 35,000 people in the United States. CFTR is an anion channel, a passageway that maintains the right balance of salts and fluid across epithelial and other membranes. Mutations in CFTR are what cause cystic fibrosis, but these mutations can affect CFTR function differently. Therefore, some drugs used to treat the disease can only partially restore function of specific mutant forms of CFTR.

Using Human Brain Cells in Rats to Understand Psychiatric Disorders with Dr. Sergiu Pasca

The journal Nature published a groundbreaking new study by world-renowned Stanford neuroscientist Sergiu Pasca involving the transfer of human brain organoids into the brains of rats. Insoo Hyun, Director of the Center for Life Sciences and Public Learning at the Museum of Science, speaks candidly with Dr. Pasca about his research. Why did he do it? How might this uncover the mysteries of psychiatric disorders? And the Big Question we are all wondering about – can these rats ever develop “human-like” consciousness? Together they demystify the science.

00:33 Dr. Sergiu Pasca’s Romanian roots.
00:55 Why is Dr. Pasca’s work important for Psychiatry?
04:14 Dr. Pasca’s work with human brain organoids.
06:14 Challenges with using animal brains when trying to unlock mysteries of human psychiatric disorders.
07:13 Reason for Dr. Pasca’s latest research transplanting human brain organoids into rat brains.
08:47 How the human brain organoid transplantation into a rat brain is accomplished.
10:19 What Dr. Pasca learned from his experiment and its importance.
12:02 Brain cells’ amazing ability to take over and organize themselves in appropriate environments.
13:03 Will animals with human brain organoids in their brain develop human-like consciousness?
17:30 Will manipulating human neurons in a rat change the behavior of the rat?
19:43 Application of rat experiment findings for human patients.
22:07 The ethics and regulation of using animals in scientific research.
25:25 Why context matters in research of transplanting human brain organoids into rat brains and the challenge of people backfilling science they might not understand with mythology and science fiction.
32:28 Dr. Pasca’s inspiration to work so hard to unlock the mysteries of psychiatric disorders.

“The Big Question” is a production of the Museum of Science, Boston.

Learn more about the Museum of Science Life Sciences and Public Learning: https://www.mos.org/explore/center-for-life-sciences.

Nature article: https://www.nature.com/articles/s41586-022-05277-w.

Among the world’s largest science centers, the Museum of Science engages millions of people each year to the wonders of science and technology through interactive exhibitions, digital programs, giant screen productions, and preK – 8 EiE® STEM curricula through the William and Charlotte Bloomberg Science Education Center. Established in 1,830, the Museum is home to such iconic experiences as the Theater of Electricity, the Charles Hayden Planetarium, and the Mugar Omni Theater. Around the world, the Museum is known for digital experiences such as Mission: Mars launching in 2022 on Roblox, and traveling exhibitions such as the Science Behind Pixar.