Toggle light / dark theme

“We put nanotubes inside of bacteria,” says Professor Ardemis Boghossian at EPFL’s School of Basic Sciences. “That doesn’t sound very exciting on the surface, but it’s actually a big deal. Researchers have been putting nanotubes in mammalian cells that use mechanisms like endocytosis, that are specific to those kinds of cells. Bacteria, on the other hand, don’t have these mechanisms and face additional challenges in getting particles through their tough exterior. Despite these barriers, we’ve managed to do it, and this has very exciting implications in terms of applications.”

Boghossian’s research focuses on interfacing artificial nanomaterials with biological constructs, including living cells. The resulting “nanobionic” technologies combine the advantages of both the living and non-living worlds. For years, her group has worked on the nanomaterial applications of single-walled carbon (SWCNTs), tubes of carbon atoms with fascinating mechanical and .

These properties make SWCNTs ideal for many novel applications in the field of nanobiotechnology. For example, SWCNTs have been placed inside to monitor their metabolisms using near-infrared imaging. The insertion of SWCNTs in mammalian cells has also led to new technologies for delivering therapeutic drugs to their intracellular targets, while in plant cells they have been used for genome editing. SWCNTs have also been implanted in living mice to demonstrate their ability to image biological tissue deep inside the body.

A review paper by scientists at Zhejiang University summarized the development of continuum robots from the aspects of design, actuation, modeling and control. The new review paper, published on Jul. 26 in the journal Cyborg and Bionic Systems, provided an overview of the classic and advanced technologies of continuum robots, along with some prospects urgently to be solved.

“Some small-scale robots with new actuation methods are being widely investigated in the field of interventional surgical treatment or endoscopy, however, the characterization of mechanical properties of them is still different problem,” explained study author Haojian Lu, a professor at the Zhejiang University.

In order to realize the miniaturization of continuum robots, many cutting-edge materials have been developed and used to realize the actuation of robots, showing unique advantages. The continuum robots embedded with micromagnet or made of ferromagnetic composite material have accurate steering ability under an external controllable magnetic field; Magnetically soft continuum robots, on the other hand, can achieve small diameters, up to the micron scale, which ensures their ability to conduct targeted therapy in bronchi or in cerebral vessels.

Summary: The TOB gene plays a significant role in reducing depression, anxiety, and fear in mouse models. The findings could have positive implications for developing new treatments for disorders associated with psychiatric stress.

Source: OIST

First characterized in Prof. Tadashi Yamamoto’s former lab in Japan in 1996, the gene Tob is well known for the role it plays in cancer. Previous research has also indicated that it has a hand in regulating the cell cycle and the body’s immune response.

According to a study presented at ESC Congress 2022, short-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is linked to a first-time hospitalization for heart failure in individuals with type 2 diabetes.

NSAIDs are the most common form of anti-inflammatory medication. The most popular NSAIDs include aspirin, ibuprofen (often known as Advil), and naproxen (known by the brand name Aleve and Naprosyn). However, despite their widespread use, these drugs can have side effects.

“In our study, approximately one in six patients with type 2 diabetes claimed at least one NSAID prescription within one year,” said first author Dr. Anders Holt of Copenhagen University Hospital, Denmark.” In general, we always recommend that patients consult their doctor before starting a new medication, and with results from this study, we hope to help doctors mitigate risk if prescribing NSAIDs.

Animal studies on great apes have long been banned in Europe for ethical reasons. For the question pursued here, organoids (three-dimensional cell structures a few millimeters in size that are grown in the laboratory) are an alternative to animal experiments. These organoids can be produced from pluripotent stem cells, which then differentiate into specific cell types, such as nerve cells. In this way, the research team was able to produce both chimpanzee brain organoids and human brain organoids. “These brain organoids allowed us to investigate a central question concerning ARHGAP11B,” says Wieland Huttner of the MPI-CBG, one of the three lead authors of the study published in EMBO Reports.

“In a previous study we were able to show that ARHGAP11B can enlarge a primate brain. However, it was previously unclear whether ARHGAP11B had a major or minor role in the evolutionary enlargement of the human neocortex,” says Wieland Huttner. To clarify this, the ARGHAP11B gene was first inserted into brain ventricle-like structures of chimpanzee organoids. Would the ARGHAP11B gene lead to the proliferation of those brain stem cells in the chimpanzee brain that are necessary for the enlargement of the neocortex?

“Our study shows that the gene in chimpanzee organoids causes an increase in relevant brain stem cells and an increase in those neurons that play a crucial role in the extraordinary mental abilities of humans,” said Michael Heide, the study’s lead author, who is head of the Junior Research Group Brain Development and Evolution at the DPZ and employee at the MPI-CBG.

Dielectric mirrors, also referred to as Bragg mirrors, reflect light nearly completely. Hence, they are suited for various applications, such as camera systems and sensor systems for microscopy and medical technologies. So far, such mirrors have been produced by complex processes in expensive vacuum devices. Researchers from Karlsruhe Institute of Technology (KIT) now are the first to print Bragg mirrors of high quality with inkjet printers. This may pave the way towards the digital manufacture of customized mirrors.

Research results are published in Advanced Materials (“Fabrication of Bragg Mirrors by Multilayer Inkjet Printing”).

Bragg mirrors are produced by applying several thin layers of materials onto a carrier. The resulting optical mirror specifically reflects the light of a certain wavelength. Reflectivity of a Bragg mirror depends on the materials, the number of layers applied, and their thicknesses. So far, Bragg mirrors have been produced in expensive vacuum production facilities. KIT researchers now were the first to print them on different carriers. This largely facilitates production.

Testing of the trains started four years ago, and their initial implementation date was meant to be in 2021. The pandemic squashed that timeline, but late last month Alstom, the French company making the trains, announced the start of passenger service.

Five Coradia iLint trains started carrying passengers in August, and nine more will replace the diesel trains currently running on a route in Bremervörde, Lower Saxony by the end of this year.

The only byproducts from the trains’ operation are steam and water; any heat created is used to help power their heating and air conditioning systems. They have a range of 1,000 kilometers (621 miles), meaning they can run on a single tank of hydrogen for a full day. Their maximum speed is 140 kilometers per hour (87 miles per hour), but their average speeds are lower than this.

The California-based Matternet has been testing its Model M2 drone over the past four years in the US as part of the FAA’s Unmanned Aircraft System (UAS) program. Matternet says getting the green light from the FAA could help streamline the process of “implementing new networks and getting approvals.”

Matternet partnered with UPS in 2019 to deliver medical supplies in North Carolina, and later started delivering prescriptions in Florida. Matternet also expanded its footprint to Switzerland, where it teamed up with the Swiss Post to deliver lab samples and blood tests. The program was briefly suspended in 2019 after its drones suffered two crashes in the country, but Matternet has since announced that it’s taking over the Swiss Post’s drone delivery program starting in 2023.

In a statement, the FAA says Matternet’s Model M2 drone “meets all federal regulations for safe, reliable and controllable operations and provides a level of safety equivalent to existing airworthiness standards applicable to other categories of aircraft.” The four-rotor drone’s been approved to carry four-pound payloads and fly at an altitude of 400 feet or lower with a maximum speed of 45mph.

Circa 2019 face_with_colon_three


By Tyler Benster.

Neuroscientists have a dizzying array of methods to listen in on hundreds or even thousands of neurons in the brain and have even developed tools to manipulate the activity of individual cells. Will this unprecedented access to the brain allow us to finally crack the mystery of how it works? In 2017, Jonas and Kording published a controversial research article, “Could a Neuroscientist Understand a Microprocessor?” that argues maybe not. To make their point, the authors turn to their “model organism” of choice: a MOS 6502 processor as popularized by the Apple I, Commodore 64, and Atari Video Game System. Jonas and Kording argue that for an electrical engineer, a satisfying description of the processor would break it into modules, like an adder or subtractor, and submodules, like the transistor, to form a hierarchy of information processing. They suggest that, while popular methods from neuroscience might reveal interesting structure in the activity of the brain, researchers often use techniques that would fail to reveal a hierarchy of information processing if applied to the (presumably much simpler) computer processor.

For example, neuroscientists have long used lesions, or turning off or destroying a part of the brain, to try to find links between that brain region and particular behaviors. In one particularly striking experiment, the authors mimicked this classic technique by simulating the processor as it performed one of four “behaviors”: Donkey Kong, Space Invaders, Pitfall, and Asteroids. They then systematically removed one transistor, and reported which (if any) of the behaviors could still be performed (i.e. did the game boot?) The elimination of 1,565 transistors have no impact, while 1,560 inhibit all behaviors, and indeed a subset of transistors make only one game impossible. Perhaps these are the Donkey Kong transistors, the authors coyly suggest, before concluding that the “causal relationship” is highly superficial.

The global dairy industry is changing. Among the disruptions is competition from food alternatives not produced using animals – including potential challenges posed by synthetic milk.

Synthetic milk does not require cows or other animals. It can have the same biochemical make up as animal milk, but is grown using an emerging biotechnology technique know as “precision fermentation” that produces biomass cultured from cells.

More than 80 percent of the world’s population regularly consume dairy products. There have been increasing calls to move beyond animal-based food systems to more sustainable forms of food production.