Toggle light / dark theme

Optimizing Human-System Performance — Dr. Greg Lieberman, Ph.D., Neuroscientist / Lead, U.S. Army Combat Capabilities Development Command Army Research Laboratory, U.S. Army Futures Command


Dr. Greg Lieberman, Ph.D. (https://www.arl.army.mil/arl25/meet-arl.php?gregory_lieberman) is a Neuroscientist, and Lead, Optimizing Human-System Performance, at the U.S. Army Combat Capabilities Development Command, Army Research Laboratory (DEVCOM ARL).

DEVCOM ARL, as an integral part of the Army Futures Command, is the Army’s foundational research laboratory focused on operationalizing science to ensure overmatch in any future conflict. DEVCOM ARL shapes future concepts with scientific research and knowledge and delivers technology for modernization solutions to win in the future operating environment.

In June, South Korean regulators authorized the first-ever medicine, a COVID vaccine, to be made from a novel protein designed by humans. The vaccine is based on a spherical protein ‘nanoparticle’ that was created by researchers nearly a decade ago, through a labour-intensive trial-and error-process1.

Now, thanks to gargantuan advances in artificial intelligence (AI), a team led by David Baker, a biochemist at the University of Washington (UW) in Seattle, reports in Science2,3 that it can design such molecules in seconds instead of months.

At first glance, the human body looks symmetrical: two arms, two legs, two eyes, two ears, even the nose and mouth appear to be mirrored on an imaginary axis dividing the faces of most people. And finally, the brain: it is divided into two halves that are roughly the same size, and the furrows and bulges also follow a similar pattern.

But the first impression is deceptive: the different regions have subtle yet functionally relevant differences between the left and right sides. The two hemispheres are specialized for different functions. Spatial attention, for example, is predominantly processed in the in most people, while language is largely processed in the left. This way, work can be distributed more effectively to both halves and thus the range of tasks is expanded overall.

But this so-called lateralization, the tendency for brain regions to process certain functions more in the left or right hemisphere, varies from person to person. And not only in the minority whose brains are specialized mirror-inverted compared to the majority. Even people with classically arranged brains differ in how pronounced their asymmetry is.

If smoke indicates a fire, nitric oxide signals inflammation. The chemical mediator promotes inflammation, but researchers suspect it can do its job too well after anterior cruciate ligament (ACL) ruptures and related injuries and initiate early onset osteoarthritis. Typically, the degenerative disease is only diagnosed after progressive symptoms, but it potentially could be identified much earlier through nitric oxide monitoring, according to Huanyu “Larry” Cheng, James E. Henderson Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State.

Cheng and his student, Shangbin Liu, who earned a master’s degree in engineering science and mechanics at Penn State this year, collaborated with researchers based in China to develop a flexible biosensor capable of continuous and wireless nitric detection in rabbits. They published their approach in the Proceedings of the National Academy of Sciences.

“Real-time assessment of biomarkers associated with inflammation, such as nitric oxide in the joint cavity, could indicate pathological evolution at the initial development of osteoarthritis, providing essential information to optimize therapies following traumatic knee injury,” Cheng said.

A novel hormone combination has been created by a research team from Helmholtz Munich, the German Center for Diabetes Research (DZD), and Novo Nordisk for the potential treatment of type 2 diabetes in the future. The researchers combined the blood sugar-lowering actions of the medications tesaglitazar and GLP-1 (Glucagon-like peptide-1) to create a new and extremely effective drug.

The benefit of combining Tesaglitazar with GLP-1 is that the Tesaglitazar only penetrates the tissue with GLP-1 receptors. This increases the effects on sugar metabolism while lessening the side effects of tesaglitazar. Scientists have already successfully tested the new drug in animal studies. The study was recently published in the journal Nature Metabolism.

Tesaglitazar enhances glucose and fat metabolism in type 2 diabetic patients. It increases insulin sensitivity by acting on two receptors inside the cell nucleus. This was demonstrated in phase 3 clinical trials. However, tesaglitazar has side effects such as kidney damage.

In nature, evolutionary chromosomal changes may take a million years, but scientists have recently reported a novel technique for programmable chromosome fusion that has successfully created mice with genetic changes that occur on a million-year evolutionary scale in the laboratory. The findings might shed light on how chromosomal rearrangements – the neat bundles of structured genes provided in equal numbers by each parent, which align and trade or mix characteristics to produce offspring – impact evolution.

In a study published in the journal Science, the researchers show that chromosome level engineering is possible in mammals. They successfully created a laboratory house mouse with a novel and sustainable karyotype, offering crucial insight into how chromosome rearrangements may influence evolution.

“The laboratory house mouse has maintained a standard 40-chromosome karyotype — or the full picture of an organism’s chromosomes — after more than 100 years of artificial breeding,” said co-first author Li Zhikun, researcher in the Chinese Academy of Sciences (CAS) Institute of Zoology and the State Key Laboratory of Stem Cell and Reproductive Biology. “Over longer time scales, however, karyotype changes caused by chromosome rearrangements are common. Rodents have 3.2 to 3.5 rearrangements per million years, whereas primates have 1.6.”

IRVINE, Calif., Sept. 13, 2022 /PRNewswire/ — AIVITA Biomedical, Inc., a biotech company specializing in innovative cell applications, today announced that chairman and CEO Hans Keirstead, Ph.D., will deliver a keynote address at AI for Good, a program dedicated to achieving the United Nations Sustainable Development Goals through practical AI applications. Details for the keynote are as follows:

Keynote title: AI in healthcare is an infant. Intelligence augmentation is an athlete. When: Wednesday, September 14, 2022, 15:00 CEST (9:00 EDT) Where: Switzerland — Virtual Presentation

The AI for Good meeting is organized by the International Telecommunication Union (ITU), the United Nations specialized agency for information and communication technologies, in partnership with 40 United Nations sister agencies.