Toggle light / dark theme

In a recent article published in Nature Materials, researchers reported a conductance-based organic electrochemical neuron (c-OECN) that mimicked biological signaling in neurons, especially activation/inactivation of their sodium and potassium channels.

Compilation of the top interviews, articles, and news in the last year.

For millions of years, nature has basically been getting by with just a few elements from the periodic table. Carbon, calcium, oxygen, hydrogen, nitrogen, phosphorus, silicon, sulfur, magnesium and potassium are the building blocks of almost all life on our planet (tree trunks, leaves, hairs, teeth, etc). However, to build the world of humans—including cities, health care products, railways, airplanes and their engines, computers, smartphones, and more—many more chemical elements are needed.

A recent article, published in Trends in Ecology and Evolution and written by researchers from CREAF, the Universitat Autònoma de Barcelona (UAB) and the Spanish National Research Council (CSIC), warns that the range of chemical elements humans need (something scientifically known as the human elementome) is increasingly diverging from that which nature requires (the biological elementome).

In 1900, approximately 80% of the elements humans used came from biomass (wood, plants, food, etc.). That figure had fallen to 32% by 2005, and is expected to stand at approximately 22% in 2050. We are heading for a situation in which 80% of the elements we use are from non-biological sources.

Summary: A new biological sensor sends electrical information in response to the presence of an odor which the robot is able to detect and interpret.

Source: Tel Aviv University.

A new technological development by Tel Aviv University has made it possible for a robot to smell using a biological sensor. The sensor sends electrical signals as a response to the presence of a nearby odor, which the robot can detect and interpret.

Plants are often thought of as sources of food, oxygen, and decoration, but not as a source of electricity. However, scientists have discovered that by harnessing the natural transport of electrons within plant cells, it is possible to generate electricity as part of a green, biological solar cell. In a recent study published in ACS Applied Materials & Interfaces, researchers for the first time used a succulent plant to create a living “bio-solar cell” that runs on photosynthesis.

Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.

If a brain is uploaded into a computer, will consciousness continue in digital form or will it end forever when the brain is destroyed? Philosophers have long debated such dilemmas and classify them as questions about personal identity. There are currently three main theories of personal identity: biological, psychological, and closest continuer theories. None of these theories can successfully address the questions posed by the possibility of uploading. I will argue that uploading requires us to adopt a new theory of identity, psychological branching identity. Psychological branching identity states that consciousness will continue as long as there is continuity in psychological structure. What differentiates this from psychological identity is that it allows identity to continue in multiple selves.

This process can occur endlessly and allows the jellyfish to escape death.

Achieving immortality has driven human beings throughout much of their history. Many peculiar legends and fables have been told about the search for the elixirs of life. Medieval alchemists worked tirelessly to find the formula for the philosopher’s stone, which granted rejuvenating powers. Another well-known story is the travels of Juan Ponce de León, who searched for the mysterious fountain of youth while conquering the New World.

But to this day, no one has discovered the keys to eternal life. However, there is one exception — a creature no more than four millimeters in size, Turritopsis dohrnii.


Biological immortality, within reach of a jellyfish

Ralph Lydic, professor in the UT Department of Psychology, and Dmitry Bolmatov, a research assistant professor in the UT Department of Physics and Astronomy, are part of a UT/ORNL research team studying how bio-inspired materials might inform the design of next-generation computers. Their results, published recently in the Proceedings of the National Academy of Sciences, could have big implications for both edge computing and human health.

Scientists at ORNL and UT discovered an artificial is capable of long-term potentiation, or LTP, a hallmark of biological learning and memory. This is the first evidence that a cell alone—without proteins or other biomolecules embedded within it—is capable of LTP that persists for many hours. It is also the first identified nanoscale structure in which memory can be encoded.

“When facilities were shut down as a result of COVID, this led us to pivot away from our usual membrane research,” said John Katsaras, a biophysicist in ORNL’s Neutron Sciences Directorate specializing in neutron scattering and the study of biological membranes at ORNL. “Together with postdoc Haden Scott, we decided to revisit a system previously studied by Pat Collier and co-workers, this time with an entirely different electrical stimulation protocol that we termed ‘training.’”.

Better treatments are definitely on the way.

Nanomedicines took the spotlight during the COVID-19 pandemic. Researchers are using these very small and intricate materials to develop diagnostic tests and treatments. Nanomedicine is already used for various diseases, such as the COVID-19 vaccines and therapies for cardiovascular disease. The “nano” refers to the use of particles that are only a few hundred nanometers in size, which is significantly smaller than the width of a human hair.


NIH Image Gallery/Flickr.

I’m a researcher studying overlooked factors in nanomedicine development. In our recently published research, my colleagues and I found that analyses of biological identity are highly inconsistent across proteomics facilities that specialize in studying proteins.

Aging appears to progress similarly across species, from worms and flies to mice and humans, and involves pathways related to early development. Guest Linda Partridge talks with Gordon while visiting the Buck Institute to discuss the evolutionary trade offs of aging mechanisms, the role of nutrient-sensing pathways, and how we might get the most benefit from preventative interventions in midlife.

Linda Partridge, born in 1950 in Bath, England, studied and graduated in biology at the University of Oxford. After three years of postdoctoral research at the University of York, she was Demonstrator, Lecturer, Reader and finally Professor at the University of Edinburgh. After many years in Scotland, in 1994 she became Professor of Biometry, University College London. She is both a founding director of the new Max Planck Institute for Biology of Ageing in Cologne and Director of the UCL Institute of Healthy Ageing. Linda Partridge’s research is directed to understanding both how the rate of aging evolves in nature and the mechanisms by which healthy lifespan can be extended in laboratory model organisms. Her work has focussed in particular on the role of nutrient-sensing pathways, such as the insulin/insulin-like growth factor signaling pathway, and on dietary restriction.