Archive for the ‘biological’ category: Page 85

Jul 6, 2021

Methane Keeps Showing Up on Mars. NASA Just Got Closer to Solving The Mystery

Posted by in categories: biological, space

Methane is an organic molecule that hangs around in Earth’s atmosphere and is mostly produced by living organisms, most notoriously by burping cows. Its detection on Mars, on the other hand, has been a weird mystery for planetary scientists.

In recent years, NASA’s Curiosity rover has picked up tiny traces of methane numerous times on the red planet. While these emissions might be coming from some geological process, it was possible they could indicate the presence of some sort of life form on Mars (unlikely to be cows, of course).

As you’d expect, scientists are really excited by that prospect, but the data are confusing. Higher in the atmosphere, orbiting technology from the European Space Agency (ESA) has detected no methane in any concentration.

Jul 6, 2021

Newly Discovered Paleonursery Offers Rare, Detailed Glimpse at Life 518 Million Years Ago

Posted by in category: biological

Deposit contains exceptionally preserved fossils of soft-bodied, juvenile organisms from the Cambrian period.

All life on Earth 500 million years ago lived in the oceans, but scientists know little about how these animals and algae developed. A newly discovered fossil deposit near Kunming, China, may hold the keys to understanding how these organisms laid the foundations for life on land and at sea today, according to an international team of researchers.

The fossil deposit, called the Haiyan Lagerstätte, contains an exceptionally preserved trove of early vertebrates and other rare, soft-bodied organisms, more than 50% of which are in the larval and juvenile stages of development. Dating to the Cambrian geologic period approximately 518 million years ago and providing researchers with 2846 specimens so far, the deposit is the oldest and most diverse found to date.

Jul 6, 2021

Methane in the Plumes of Saturn’s Moon Enceladus: Possible Signs of Life?

Posted by in categories: biological, chemistry, food, space

An unknown methane-producing process is likely at work in the hidden ocean beneath the icy shell of Saturn’s moon Enceladus, suggests a new study published in Nature Astronomy by scientists at the University of Arizona and Paris Sciences & Lettres University.

Giant water plumes erupting from Enceladus have long fascinated scientists and the public alike, inspiring research and speculation about the vast ocean that is believed to be sandwiched between the moon’s rocky core and its icy shell. Flying through the plumes and sampling their chemical makeup, the Cassini spacecraft detected a relatively high concentration of certain molecules associated with hydrothermal vents on the bottom of Earth’s oceans, specifically dihydrogen, methane and carbon dioxide. The amount of methane found in the plumes was particularly unexpected.

“We wanted to know: Could Earthlike microbes that ‘eat’ the dihydrogen and produce methane explain the surprisingly large amount of methane detected by Cassini?” said Régis Ferrière, an associate professor in the University of Arizona Department of Ecology and Evolutionary Biology and one of the study’s two lead authors. “Searching for such microbes, known as methanogens, at Enceladus’ seafloor would require extremely challenging deep-dive missions that are not in sight for several decades.”

Jul 5, 2021

A Nanowire Network That Mimics the Brain Could Inspire New Designs in AI

Posted by in categories: biological, nanotechnology, robotics/AI

“What’s so exciting about this result is that it suggests that these types of nanowire networks can be tuned into regimes with diverse, brain-like collective dynamics, which can be leveraged to optimize information processing,” said Zdenka Kuncic from the University of Sydney in a press release.

Today’s deep neural networks already mimic one aspect of the brain: its highly interconnected network of neurons. But artificial neurons behave very differently than biological ones, as they only carry out computations. In the brain, neurons are also able to remember their previous activity, which then influences their future behavior.

This in-built memory is a crucial aspect of how the brain processes information, and a major strand in neuromorphic engineering focuses on trying to recreate this functionality. This has resulted in a wide range of designs for so-called “memristors”: electrical components whose response depends on the previous signals they have been exposed to.

Jul 5, 2021

Longevity Panel — The Scientists working on Reversing Aging | Part 1

Posted by in categories: biological, life extension

Long vid. Slight annotation in the comments. A few takaways I liked: We need to move to human data instead of mice. People’s attitude towards life extension should change drastically soon. There is human data among this group and have released it, will keep following it, and some to be released soon. Sinclair thinks he can start primate trials this year. And overall everyone is optimistic.

A couple of weeks ago Avi Roy, alongside Nathan Cheng & Laura Minquini, hosted the Longevity Panel discussion, which assembled some of the biggest scientists in the field currently working on reversing aging.

Continue reading “Longevity Panel — The Scientists working on Reversing Aging | Part 1” »

Jul 3, 2021

The Technological Revolution (The 4th Industrial Revolution Explained)

Posted by in categories: 3D printing, augmented reality, biological, bitcoin, food, information science, robotics/AI, space, sustainability

This video was made possible by NordPass. Sign up with this link and get 70% off your premium subscription + 1 monrth for free!

Visit Our Parent Company EarthOne For Sustainable Living Made Simple ➤

Continue reading “The Technological Revolution (The 4th Industrial Revolution Explained)” »

Jul 2, 2021

Quantum-enhanced nonlinear microscopy

Posted by in categories: biological, quantum physics

A quantum microscope obtains signal-to-noise beyond the photodamage limits of conventional microscopy, revealing biological structures within cells that would not otherwise be resolved.

Jun 30, 2021

Beyond coronavirus: the virus discoveries transforming biology

Posted by in categories: biological, biotech/medical

Over the past ten years, the number of known and named viruses has exploded, owing to advances in the technology for finding them, plus a recent change to the rules for identifying new species, to allow naming without having to culture virus and host. One of the most influential techniques is metagenomics, which allows researchers to sample the genomes in an environment without having to culture individual viruses. Newer technologies, such as single-virus sequencing, are adding even more viruses to the list, including some that are surprisingly common yet remained hidden until now. It’s an exciting time to be doing this kind of research, says Breitbart. “I think, in many ways, now is the time of the virome.”

SARS-CoV-2 is just one of nonillions of viruses on our planet, and scientists are rapidly identifying legions of new species.

Jun 27, 2021

Rapamycin Extends Lifespan

Posted by in categories: biological, life extension

Rapamycin consistently shows lifespan extension in mice and in my opinion, is the most exciting molecule to possibly extend healthspan in humans. This video dives into the data.

Thanks for watching, I hope you enjoyed the content and found it genuinely useful.
Please consider supporting the channel by signing up to Patreon:

Continue reading “Rapamycin Extends Lifespan” »

Jun 27, 2021

Optical tweezer technology tweaked to overcome dangers of heat

Posted by in categories: biological, particle physics

Three years ago, Arthur Ashkin won the Nobel Prize for inventing optical tweezers, which use light in the form of a high-powered laser beam to capture and manipulate particles. Despite being created decades ago, optical tweezers still lead to major breakthroughs and are widely used today to study biological systems.

However, optical tweezers do have flaws. The prolonged interaction with the can alter molecules and particles or damage them with excessive heat.

Researchers at The University of Texas at Austin have created a new version of optical tweezer technology that fixes this problem, a development that could open the already highly regarded tools to new types of research and simplify processes for using them today.

Page 85 of 187First8283848586878889Last