A deep dive into how AI is breathing new life into biological research.
Category: biological – Page 29
However, the yeast should be treated to rid compounds that can increase the risk of gout if consumed excessively. Even so, treated yeast still meets 41% of the daily protein requirement, comparable to traditional protein sources.
This technology aims to address several global challenges: environmental conservation, food security, and public health. Running on clean energy and CO2, the system reduces carbon emissions in food production. It uncouples land use from farming, freeing up space for conservation.
Angenent also stresses that it will not outcompete farmers. Instead, the technology will help farmers concentrate on producing vegetables and crops sustainably. The team’s yeast may also help developing nations overcome food scarcity and nutritional deficiencies by delivering protein and vitamin B9.
Also discussed is a comparison between analog computing and digital in the context of computational biology. In this video I am reading a recent discussion of my notes with Self Aware Networks.
As an innovative concept in materials science and engineering, the inspiration for self-healing materials comes from living organisms that have the innate ability to self-heal. Along this line, the search for self-healing materials has been generally focused on “soft” materials like polymers and hydrogels. For solid-state metals, one may intuitively imagine that any form of self-healing will be much more difficult to achieve.
Research teams from Wuhan University and the China University of Geosciences (Wuhan) have revealed new insights into the formation mechanism of nitrogen-vacancies (NV) centers in type-Ib diamonds, a phenomenon critical to quantum sensing and computing advancements. Using a novel irradiation and annealing method, the teams demonstrated how controlled temperature and orientation can significantly increase the density and depth of NV centers, paving the way for new applications in biological imaging and quantum technologies.
Learning and a spectrum of other behavioral competencies allow organisms to rapidly adapt to dynamically changing environmental variations. The emerging field of diverse intelligence seeks to understand what systems, besides ones with complex brains, exhibit these capacities. Here, we tested predictions of a general computational framework based on the free energy principle in neuroscience but applied to aneural biological process as established previously, by demonstrating and manipulating pattern recognition in a simple aneural organism, the green algae Volvox. Our studies of the adaptive photoresponse in Volvox reveal that aneural organisms can distinguish between patterned and randomized inputs and indicate how this is achieved mechanistically.
Microelectromechanical systems (MEMS) are tiny devices that integrate various components, such as miniature sensors, electronics and actuators, onto a single chip. These small devices have proved highly promising for precisely detecting biological signals, acceleration, force and other measurements.
Most of the MEMS developed to date are made of silicon and silicon nitride. While some of these devices have achieved promising results, their material composition and design limit their sensitivity and versatility, for instance limiting their use in wet environments.
In a recent Nature Electronics paper, researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL) introduced an innovative cantilever design for MEMS based on a polymer, a semiconductor and ceramic. Cantilevers are tiny flexible beams that can adapt their shape in response to external forces or molecular interactions, thus potentially serving as sensors or actuators.
Coherent X-ray imaging has emerged as a powerful tool for studying both nanoscale structures and dynamics in condensed matter and biological systems. The nanometric resolution together with chemical sensitivity and spectral information render X-ray imaging a powerful tool to understand processes such as catalysis, light harvesting or mechanics.
Unfortunately these processes might be random or stochastic in nature. In order to obtain freeze-frame images to study stochastic dynamics, the X-ray fluxes must be very high, potentially heating or even destroying the samples.
Also, detectors acquisition rates are insufficient to capture the fast nanoscale processes. Stroboscopic techniques allow imaging ultrafast repeated processes. But only mean dynamics can be extracted, ruling out measurement of stochastic processes, where the system evolves through a different path in phase space during each measurement. These two obstacles prevent coherent imaging from being applied to complex systems.
Synthetic Plants For A Sustainable Future — Dr. Angie Burnett, Ph.D. — Program Director, Advanced Research + Invention Agency (ARIA)
Dr. Angie Burnett, Ph.D. is Program Director at the Advanced Research and Invention Agency (ARIA — https://www.aria.org.uk/), a UK organization created by an Act of Parliament, and sponsored by the Department for Science, Innovation, and Technology, to fund projects across a full spectrum of R\&D disciplines, approaches, and institutions, per the ARIA mission statement to “Look beyond what exists today to the breakthroughs we’ll need tomorrow”
Prior to this role, Dr. Burnett was a Research Associate in the Department of Plant Sciences, and a former David MacKay Research Associate at Darwin College and Cambridge Zero where her work focused on understanding the response of maize plants to high light and cold temperature stresses, and the genetic basis for stress tolerance, so that breeders can produce plants which are better able to withstand environmental stress.
Dr. Burnett’s background is in plant physiology. She holds a BA from the University of Cambridge and a PhD from the University of Sheffield, where she was awarded the inaugural PhD studentship from the Society for Experimental Biology. Before commencing her role at the University of Cambridge, she worked as a postdoctoral research associate at Brookhaven National Laboratory in the USA and as a Consultant at the Food and Agriculture Organization of the United Nations in Italy.
Important Episode Links.
A specially coated foil removed more than 99% of E. coli bacteria from water in laboratory tests.