Toggle light / dark theme

Model‐guided combinatorial optimization of complex synthetic gene networks

Constructing gene circuits that satisfy quantitative performance criteria has been a long‐standing challenge in synthetic biology. Here, we show a strategy for optimizing a complex three‐gene circuit, a novel proportional miRNA biosensor, using predictive modeling to initiate a search in the phase space of sensor genetic composition. We generate a library of sensor circuits using diverse genetic building blocks in order to access favorable parameter combinations and uncover specific genetic compositions with greatly improved dynamic range. The combination of high‐throughput screening data and the data obtained from detailed mechanistic interrogation of a small number of sensors was used to validate the model. The validated model facilitated further experimentation, including biosensor reprogramming and biosensor integration into larger networks, enabling in principle arbitrary logic with miRNA inputs using normal form circuits. The study reveals how model‐guided generation of genetic diversity followed by screening and model validation can be successfully applied to optimize performance of complex gene networks without extensive prior knowledge.

Biology’s ‘breadboard’

Nice; using gene regulatory protein from yeast as a method for reducing the work required for making cell-specific perturbations.


The human brain, the most complex object in the universe, has 86 billion neurons with trillions of yet-unmapped connections. Understanding how it generates behavior is a problem that has beguiled humankind for millennia, and is critical for developing effective therapies for the psychiatric disorders that incur heavy costs on individuals and on society. The roundworm C elegans, measuring a mere 1 millimeter, is a powerful model system for understanding how nervous systems produce behaviors. Unlike the human brain, it has only 302 neurons, and has completely mapped neural wiring of 6,000 connections, making it the closest thing to a computer circuit board in biology. Despite its relative simplicity, the roundworm exhibits behaviors ranging from simple reflexes to the more complex, such as searching for food when hungry, learning to avoid food that previously made it ill, and social behavior.

Understanding how this dramatically simpler nervous system works will give insights into how our vastly more complex brains function and is the subject of a paper published on December 26, 2016, in Nature Methods.

The Goals of Extraterrestrial AI May “Conflict With Those of Biological Life”

In Brief

  • An expert on the intersection of science and philosophy posits that our current transition to “postbiological” life could have already been undertaken by extraterrestrial species.
  • She warns that these alien lifeforms could by artificially intelligent, in which case they could pose a tremendous threat to life on Earth.

Susan Schneider is a fellow at the Institute for Ethics and Emerging Technologies (IEET). She is also an associate professor of philosophy at the University of Connecticut, and her expertise includes the philosophy of cognitive science, particularly with regards to the plausibility of computational theories of mind and theoretical issues in artificial intelligence (AI).

In short, Schneider has a keen understanding of the intersection between science and philosophy. As such, she also has a unique perspective on AI, offering a fresh (but quite alarming) view on how artificial intelligence could forever alter humanity’s existence. In an article published by the IEET, she shares that perspective, talking about potential flaws in the way we view AI and suggesting a possible connection between AI and extraterrestrial life.

Molecular Velcro boosts microalgae’s potential in biofuel, industrial applications

Michigan State University scientists have engineered “molecular Velcro” into to cyanobacteria, boosting this microalgae’s biofuel viability as well as its potential for other research.

The findings, featured in the current issue of ACS Synthetic Biology, show how MSU researchers have designed a surface display system to attach cyanobacteria, also known as blue-green algae, to yeast and other surfaces. The proof-of-concept may improve the efficiency of harvesting algae as well as open avenues to improve the construction of artificial microbial communities for sustainable biofuel production or other industrial projects.

“Inadequate cyanobacterial toolkits limited our ability to come up with biological solutions,” said Derek Fedeson, MSU graduate student and the study’s co-lead author. “So, we wanted to add another tool to the toolbox to expand the capacity of these bacteria, which can harness solar energy for the production of useful compounds.”

Cellular reprogramming turns back the aging clock in mice

This cartoon depicts turning back the aging clock through cellular regeneration of progeria mice (credit: Juan Carlos Izpisua Belmonte Lab/Salk Institute)

Salk Institute scientists have extended the average lifespan of live mice by 30 percent, according to a study published December 15 in Cell. They did that by rolling back the “aging clock” to younger years, using cellular reprogramming.

The finding suggests that aging is reversible by winding back an animal’s biological clock to a more youthful state and that lifespan can be extended. While the research does not yet apply directly to humans, it promises to lead to improved understanding of human aging and the possibility of rejuvenating human tissues.

Counting Cells

Scientists from MIT and Boston University have developed biological cells that can count and ‘remember’ cellular events by creating simple circuits through a series of genes that are activated in a precise order. These circuits, which the scientists say simulate computer chips, could be employed to tally the number of times a cell divides or to track a cycle of developmental stages. Such counting cells could also be used as biosensors to count the number of toxin exposures present in an environment.

The CellAge long form AMA Starts Friday with questions answered Monday 11am PST/2pm EST/6pm GMT

Senolytics meets Synthetic biology so come along and ask them anything!


Hey folks, We are excited to announce that the CellAge longform AMA opens Friday for questions and the CellAge team will answer them from Monday 11am PST/2pm EST/6pm GMT. We will update the link to the Futurology AMA once it is ready.

CellAge are using synthetic biology to create new biomarkers for senescent cell detection, developing a new therapy to remove senescent cells which drive the aging process using custom synthetic biology. Come along and ask them all about it.

#aging #crowdfundthecure

Evolution’s Brutally Simple Rules Can Make Machines More Creative

Creative Machines; however, are they truly without a built in bias due to their own creator/s?


Despite nature’s bewildering complexity, the driving force behind it is incredibly simple. ‘Survival of the fittest’ is an uncomplicated but brutally effective optimization strategy that has allowed life to solve complex problems, like vision and flight, and colonize the harshest of environments.

Researchers are now trying to harness this optimization process to find solutions to a host of science and engineering problems. The idea of using evolutionary principles in computation dates back to the 1950s, but it wasn’t until the 1960s that the idea really took off. By the 1980s the approach had crossed over from academic curiosities into real-world fields like engineering and economics.

Applying natural selection to computing

Evolutionary algorithms are numerous and diverse, but they all seek to replicate key features of biological evolution, such as natural selection, reproduction and mutation. Typically these methods rely on a kind of trial and error — a large population of potential solutions to a problem are randomly generated and tested against a so-called “fitness function.” This lets the system rank the solutions in order of how well they solve the problem.

Light Harvesting “Quantum Photocells” Herald A New Age in Solar Energy

In Brief

  • By combining the fields of quantum physics and biology, researchers have developed more efficient solar cells inspired by photosynthesis.
  • With current solar cells wasting about 80 percent of the energy absorbed, it will be interesting to see what future innovative approaches will allow in the pursuit toward universal clean energy.

Science once again reaches a milestone in technology by modeling it after nature. Researchers have devised a new type of highly efficient photocell by studying photosynthesis in plants.

Nathan Gabor, assistant professor for physics and astronomy at the University of California, Riverside, led research spurred by a simple question as to why plants are green. This eventually led to a quest to mimic plants’ ability to efficiently harvest energy from the Sun regardless of how erratic the sunlight is.

/* */