Are we poised to witness the evolution of evolution itself? In the following interview, expert Peter Diamandis predicts not only will humanity soon transcend its current biological limits, our world will become automated and magical, responding to our deepest desires and inner thoughts.
Category: biological – Page 182
The bacteria in your gut may offer an accurate way to measure your biological age, according to a new study.
The microbiome
In recent years, it has become increasingly apparent that the communities of bacteria, fungi, and other microbes living in our gut, known as the microbiome, are likely involved in aging, particularly the chronic age-related inflammation that accompanies it.
2019 will be the year in which we discover molecules and properties that are as yet unknown to humans. The breadth of biology and the enormous flexibility of genetic material will provide us with an ideal platform to explore an effectively unlimited number of molecules for novel materials and solutions. We will ultimately leave behind hydrocarbons and truly enter the biological age.
Joshua Hoffman is cofounder and CEO of Zymergen
– Meet the companies fixing depression by stimulating neurons.
I’m excited to share my new article from Quartz on how science will make it safer and easier for a 50-year-old woman to have a child in 2028 than a 25-year-old woman today. #IVG and #DelayedFertilityAdvantage are game changers.
Women’s biological clocks drive human conception—and, in turn, human history.
Biology’s inflexible window of female fertility is generally agreed to be between the ages 18 and 35. Any older, and the risk of miscarrying, not getting pregnant at all, or bearing unhealthy children skyrockets. When the average lifespan for a woman in the Western world now hovers at around 80 years old, this means that less than 25% of her life can be spent easily (and safely) procreating.
Men have the luxury of being able sow their seed for most of their lives with few health ramifications (which is why someone like 72-year-old US president Donald Trump has a 12-year-old child). By comparison, the average woman will only ovulate 300 to 400 eggs in her lifetime, which means she only has the same amount of menstrual cycles to ever pursue procreation.
Living in extreme conditions requires creative adaptations. For certain species of bacteria that exist in oxygen-deprived environments, this means finding a way to breathe that doesn’t involve oxygen. These hardy microbes, which can be found deep within mines, at the bottom of lakes, and even in the human gut, have evolved a unique form of breathing that involves excreting and pumping out electrons. In other words, these microbes can actually produce electricity.
Scientists and engineers are exploring ways to harness these microbial power plants to run fuel cells and purify sewage water, among other uses. But pinning down a microbe’s electrical properties has been a challenge: The cells are much smaller than mammalian cells and extremely difficult to grow in laboratory conditions.
Now MIT engineers have developed a microfluidic technique that can quickly process small samples of bacteria and gauge a specific property that’s highly correlated with bacteria’s ability to produce electricity. They say that this property, known as polarizability, can be used to assess a bacteria’s electrochemical activity in a safer, more efficient manner compared to current techniques.
This new study, led by the MRC’s Laboratory of Molecular Biology (LMB) in Cambridge, used microscopic imaging to observe the detailed internal molecular clock timing of the astrocytes and neurons of the SCN. Surprisingly, this showed that although both types of cell have their own circadian clocks, they are differently regulated and were seen to be active at different times of the day. This delicate interplay was found to be critical in keeping the entire SCN clockwork ticking.
A new study has found that astrocytes, previously thought of as just supporting neurons in regulating circadian rhythms, can actually lead the tempo of the body’s internal clock and have been shown for the first time to be able to control patterns of daily behavior in mammals.
One mysterious number determines how physics, chemistry and biology work. But controversial experimental hints suggest it’s not one number at all.
By Michael Brooks
IT IS a well-kept secret, but we know the answer to life, the universe and everything. It’s not 42 – it’s 1/137.
This immutable number determines how stars burn, how chemistry happens and even whether atoms exist at all. Physicist Richard Feynman, who knew a thing or two about it, called it “one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding”.
These technologies will be applied to produce self- cleaning and aseptic machine parts for food industry.
Project will develop high-throughput laser-based texturing for fluid-repellent and antibacterial metal surfaces using innovative industrial high-average power ultrashort-pulsed lasers in combination with high-performance scanning heads. These technologies will be applied to produce self-cleaning and aseptic machine parts for food industry (e.g. components in contact with biological foods) and home appliances (e.g. dishwashers) by utilising a beam deliverary method over areas that can reach 250mm2.
(Hoboken, N.J. — Nov. 7, 2018) — In their latest feat of engineering, researchers at Stevens Institute of Technology have taken an ordinary white button mushroom from a grocery store and made it bionic, supercharging it with 3D-printed clusters of cyanobacteria that generate electricity and swirls of graphene nanoribbons that can collect the current.
The work, reported in the Nov. 7 issue of Nano Letters, may sound like something straight out of Alice in Wonderland, but the hybrids are part of a broader effort to better improve our understanding of cells biological machinery and how to use those intricate molecular gears and levers to fabricate new technologies and useful systems for defense, healthcare and the environment.
“In this case, our system – this bionic mushroom — produces electricity,” said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. “By integrating cyanobacteria that can produce electricity, with nanoscale materials capable of collecting the current, we were able to better access the unique properties of both, augment them, and create an entirely new functional bionic system.”