Toggle light / dark theme

Something odd is stirring in the depths of Canada’s Kidd Mine. The zinc and copper mine, 350 miles northwest of Toronto, is the deepest spot ever explored on land and the reservoir of the oldest known water. And yet 7,900 feet below the surface, in perpetual darkness and in waters that have remained undisturbed for up to two billion years, the mine is teeming with life.

Many scientists had doubted that anything could live under such extreme conditions. But in July, a team led by University of Toronto geologist Barbara Sherwood Lollar reported that the mine’s dark, deep water harbors a population of remarkable microbes.

The single-celled organisms don’t need oxygen because they breathe sulfur compounds. Nor do they need sunlight. Instead, they live off chemicals in the surrounding rock — in particular, the glittery mineral pyrite, commonly known as fool’s gold.

On Wednesday, Tesla CEO Elon Musk and Alibaba cofounder Jack Ma took the stage at the World AI Conference in Shanghai to debate artificial intelligence and its implications for humanity. As expected, Ma took a far more optimistic stance than Musk. Ma encouraged people to have faith in humanity, our creativity, and the future. “I don’t think artificial intelligence is a threat,” he said, to which Musk replied, “I don’t know, man, that’s like, famous last words.” An edited transcript of the discussion follows.

Elon Musk: What are we supposed to say? Just things about AI perhaps? Yeah. Okay. Let’s see.

Jack Ma: The AI, right? Okay, great.

Researchers have launched a new database dedicated to mapping and understanding the complexity of cellular senescence in a bid to help us fully understand this age-related phenomenon.

Introducing the CellAge database

The Human Ageing Genomic Resources ( HAGR ) is a series of databases and tools that have been developed to aid researchers on aging and help them study the genetic elements of human aging. The databases utilize modern techniques, such as functional genomics, network analyses, systems biology, and evolutionary analyses, to build what is one of the most valuable resources available today.

Any future colonization efforts directed at the Mars all share one problem in common; their reliance on a non-existent magnetic field. Mars’ magnetosphere went dark about 4 billion years ago when it’s core solidified due to its inability to retain heat because of its small mass. We now know that Mars was quite Earth-like in its history. Deep oceans once filled the now arid Martian valleys and a thick atmosphere once retained gasses which may have allowed for the development of simple life. This was all shielded by Mars’ prehistoric magnetic field.

When Mars’ magnetic line of defense fell, much of its atmosphere was ripped away into space, its oceans froze deep into the red regolith, and any chance for life to thrive there was suffocated. The reduction of greenhouse gasses caused Mars’ temperature to plummet, freezing any remaining atmosphere to the poles. Today, Mars is all but dead. Without a magnetic field, a lethal array of charged particles from the Sun bombards Mars’ surface every day threatening the potential of hosting electronic systems as well as biological life. The lack of a magnetic field also makes it impossible for Mars to retain an atmosphere or an ozone layer, which are detrimental in filtering out UV and high energy light. This would seem to make the basic principles behind terraforming the planet completely obsolete.

I’ve read a lot of articles about the potential of supplying Mars with an artificial magnetic field. By placing a satellite equipped with technology to produce a powerful magnetic field at Mars L1 (a far orbit around Mars where gravity from the Sun balances gravity from Mars, so that the satellite always remains between Mars and the Sun), we could encompass Mars in the resulting magnetic sheath. However, even though the idea is well understood and written about, I couldn’t find a solid mathematical proof of the concept to study for actual feasibility. So I made one!

This could lead to self-healing cars.


Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a mathematical framework that can turn any sheet of material into any prescribed shape, inspired by the paper craft termed kirigami (from the Japanese, kiri, meaning to cut and kami, meaning paper).

Unlike its better-known cousin origami, which uses folds to shape , kirigami relies on a pattern of cuts in a flat paper sheet to change its flexibility and allow it to morph into 3D shapes. Artists have long used this artform to create everything from pop-up cards to castles and dragons.

“We asked if it is possible to uncover the basic mathematical principles underlying kirigami and use them to create algorithms that would allow us to design the number, size and orientation of the cuts in a flat sheet so that it can morph into any given shape,” said L. Mahadevan, de Valpine Professor of Applied Mathematics, Physics, and Organismic and Evolutionary Biology, the senior author on the paper.