Toggle light / dark theme

Innovative, Scientific, And Empathic Solutions For Revitalizing Camden, NJ, USA — Jennifer A. Huse, Mayoral Candidate, 2021


Jennifer Huse is a candidate for Mayor of Camden, New Jersey, USA, running in the upcoming 2021 election, as an independent.

Information on Jennifer’s campaign can be found at — https://www.jahformayor.com/

Jennifer has a background and education in Cell and Molecular Biology, Exercise Science, Social Media Management, Communications, Marketing and Business Management, and her diverse background, gives a unique perspective when it comes to her ideas for the future improvement of the city.

A key pillar of Jennifer’s platform is in testing and advancing novel solutions for improving current social systems and introducing new technologies via a model called The Center for Scientific Solutions.

It points out that to measure down to the synapse the energy needed would melt the tissue of your head.


Investigate the possibility of scanning the human brain and uploading our minds and consciousness to a digital world.

Imagine a future where nobody dies— instead, our minds are uploaded to a digital world. There they could live on in a realistic, simulated environment with avatar bodies, calling in and contributing to the biological world. Mind-uploading has powerful appeal— but what would it actually take to scan a person’s brain and upload their mind? Michael S. A. Graziano explores the challenges.

Lesson by Michael S. A. Graziano, directed by Lobster Studio.

Animator’s website: https://www.lobsterstudio.tv.

Consciousness remains scientifically elusive because it constitutes layers upon layers of non-material emergence: Reverse-engineering our thinking should be done in terms of networks, modules, algorithms and second-order emergence — meta-algorithms, or groups of modules. Neuronal circuits correlate to “immaterial” cognitive modules, and these cognitive algorithms, when activated, produce meta-algorithmic conscious awareness and phenomenal experience, all in all at least two layers of emergence on top of “physical” neurons. Furthermore, consciousness represents certain transcendent aspects of projective ontology, according to the now widely accepted Holographic Principle.

#CyberneticTheoryofMind


There’s no shortage of workable theories of consciousness and its origins, each with their own merits and perspectives. We discuss the most relevant of them in the book in line with my own Cybernetic Theory of Mind that I’m currently developing. Interestingly, these leading theories, if metaphysically extended, in large part lend support to Cyberneticism and Digital Pantheism which may come into scientific vogue with the future cyberhumanity.

According to the Interface Theory of Perception developed by Donald Hoffman and the Biocentric theory of consciousness developed by Robert Lanza, any universe is essentially non-existent without a conscious observer. In both theories, conscious minds are required as primary building blocks for any universe arising from probabilistic domain into existence. But biological minds reveal to us just a snippet in the space of possible minds. Building on the tenets of Biocentrism, Cyberneticism goes further and includes all other possible conscious observers such as artificially intelligent self-aware entities. Perhaps, the extended theory could be dubbed as ‘Noocentrism’.

Existence boils down to experience. No matter what ontological level a conscious entity finds herself at, it will be smack in the middle, between her transcendental realm and lower levels of organization. This is why I prefer the terms ‘Experiential Realism’ and ‘Pantheism’ as opposed to ‘Panentheism’ as some suggested in regards to my philosophy.

Cryopreservation, or the long-term storage of biomaterials at ultralow temperatures, has been used across cell types and species. However, until now, the practical cryopreservation of the fruit fly (Drosophila melanogaster)—which is crucial to genetics research and critical to scientific breakthroughs benefiting human health—has not been available.

“To keep alive the ever-increasing number of with unique genotypes that aid in these breakthroughs, some 160000 different flies, laboratories and stock centers engage in the costly and frequent transfer of adults to fresh food, risking contamination and ,” said Li Zhan, a postdoctoral associate with the University of Minnesota College of Science and Engineering and the Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio).

In new research published in Nature Communications, a University of Minnesota team has developed a first-of-its-kind method that cryopreserves fruit fly embryos so they can be successfully recovered and developed into adult insects. This method optimizes embryo permeabilization and age, cryoprotectant agent composition, different phases of nitrogen (liquid vs. slush), and post-cryopreservation embryo culture methods.

Others think we’re still missing fundamental aspects of how intelligence works, and that the best way to fill the gaps is to borrow from nature. For many that means building “neuromorphic” hardware that more closely mimics the architecture and operation of biological brains.

The problem is that the existing computer technology we have at our disposal looks very different from biological information processing systems, and operates on completely different principles. For a start, modern computers are digital and neurons are analog. And although both rely on electrical signals, they come in very different flavors, and the brain also uses a host of chemical signals to carry out processing.

Now though, researchers at NIST think they’ve found a way to combine existing technologies in a way that could mimic the core attributes of the brain. Using their approach, they outline a blueprint for a “neuromorphic supercomputer” that could not only match, but surpass the physical limits of biological systems.

In this nearly 4-hour SPECIAL EPISODE, Rob Reid delivers a 100-minute monologue (broken up into 4 segments, and interleaved with discussions with Sam) about the looming danger of a man-made pandemic, caused by an artificially-modified pathogen. The risk of this occurring is far higher and nearer-term than almost anyone realizes.

Rob explains the science and motivations that could produce such a catastrophe and explores the steps that society must start taking today to prevent it. These measures are concrete, affordable, and scientifically fascinating—and almost all of them are applicable to future, natural pandemics as well. So if we take most of them, the odds of a future Covid-like outbreak would plummet—a priceless collateral benefit.

Rob Reid is a podcaster, author, and tech investor, and was a long-time tech entrepreneur. His After On podcast features conversations with world-class thinkers, founders, and scientists on topics including synthetic biology, super-AI risk, Fermi’s paradox, robotics, archaeology, and lone-wolf terrorism. Science fiction novels that Rob has written for Random House include The New York Times bestseller Year Zero, and the AI thriller After On. As an investor, Rob is Managing Director at Resilience Reserve, a multi-phase venture capital fund. He co-founded Resilience with Chris Anderson, who runs the TED Conference and has a long track record as both an entrepreneur and an investor. In his own entrepreneurial career, Rob founded and ran Listen.com, the company that created the Rhapsody music service. Earlier, Rob studied Arabic and geopolitics at both undergraduate and graduate levels at Stanford, and was a Fulbright Fellow in Cairo. You can find him at www.after-on.

Phosphorus, the element critical for life´s origin and life on Earth, may be even Venus.


Scientists studying the origin of life in the universe often focus on a few critical elements, particularly carbon, hydrogen, and oxygen. But two new papers highlight the importance of phosphorus for biology: an assessment of where things stand with a recent claim about possible life in the clouds of Venus, and a look at how reduced phosphorus compounds produced by lightning might have been critical for life early in our own planet’s history.

First a little biochemistry: Phosphine is a reduced phosphorus compound with one phosphorus atom and three hydrogen atoms. Phosphorus is also found in its reduced form in the phosphide mineral schreibersite, in which the phosphorus atom binds to three metal atoms (either iron or nickel). In its reduced form, phosphorus is much more reactive and useful for life than is phosphate, where the phosphorus atom binds to four oxygen atoms. Phosphorus is also the element that is most enriched in biological molecules as compared to non-biological molecules, so it’s not a bad place to start when you’re hunting for life.

In the second of the new papers, Benjamin Hess from Yale University and colleagues highlight the contribution of lightning as a source of reduced phosphorus compounds such as schreibersite. It has long been recognized that meteorites supplied much of the reduced phosphorus needed for the origin of life on Earth. But Hess thinks the contribution of lightning has been underestimated. For one thing, lightning was much more common early in our planet’s history. The authors calculate that it could have produced up to 10000 kilograms of reduced phosphorus compounds per year—which may have been enough to jump-start life, especially because we don’t know how much of the reduced phosphorus from meteorites actually survives (in that form) the impact on Earth.

There are several key technologies converging on an inevitable effect, namely a dramatic, explosive increase in human population. Currently around 40% of Earth’s total land area is dedicated to agricultural production to feed seven billion people, but, interestingly, while the human population will increase, the land area required to sustain this population will decrease, approaching zero land area to sustain a trillion human lives. In this era, bulk elements such as gold will have no value, since they will be so easy to produce by fusion separation of elements from bulk rock. Instead, value will be attached to biological material and, most importantly, new technologies themselves.

The several key emerging technologies that make this state of affairs unstoppable are listed along with aspects of their impact:

1) Most important is fusion energy, an unlimited, scalable energy, with no special fuel required to sustain it. This will allow nearly all agriculture to be contained in underground “vertical farm” buildings, extending thousands of feet downwards. Cheap artificially-lighted, climate-controlled environments will allow the maximum efficiency for all food crops. Thus, agriculture will take up close to zero surface area, largely produced underground on Earth or the Moon.

2) Crispr-gene edited foods, allowing the transformation of thousands of currently inedible plants into new types of fruits, vegetables and cereals, while also allowing diversity of currently-existing ones. Everything people eat has been genetically modified by thousands of years of human cultivation; that modification will take place over several years instead of thousands.

3) Acellular agriculture, where yeasts are bioengineered to produce milk and other proteins without any live mammals. Products using this method began to enter the market in 2020.

4) Cell-base meat, the production of animal meat in bioreactors, without the need for killing of animals. This will also broaden the choices of widely-available meats from a few bulk types, such as beef, pork and chicken, to thousands of choices.

5) Micro-organism farming, as with the “Solar Foods” company’s use of micro-organisms to produce limitless quantities of protein, fats and carbohydrates in bioreactors.