We now know that all extant living creatures derive from a single common ancestor, called the ‘Last Universal Common Ancestor’ (LUCA). It’s hard to think of a more unifying view of life. All living things are linked to a single-celled creature, the deepest root to the complex-branching tree of life. If we could play the movie of life backward, we would find this microscopic primogenitor at the starting point of biological evolution, the sole actor in what would become a very dramatic story, lasting some 3.5 billion years leading to us.
Category: biological – Page 151
As transhumanists, we aim at the so-called continuity of subjectivity by the means of advanced technologies. Death in a common sense of the word becomes optional and cybernetic immortality is within our reach during our lifetimes. By definition, posthumanism (I choose to call it ‘cyberhumanism’) is to replace transhumanism at the center stage circa 2035. By then, mind uploading could become a reality with gradual neuronal replacement, rapid advancements in Strong AI, massively parallel computing, and nanotechnology allowing us to directly connect our brains to the Cloud-based infrastructure of the Global Brain. Via interaction with our AI assistants, the GB will know us better than we know ourselves in all respects, so mind-transfer, or rather “mind migration,” for billions of enhanced humans would be seamless, sometime by mid-century.
By 2040, mind-uploading may become a norm and a fact of life with a “critical mass” of uploads and cybernetic immortality. Any container with a sufficiently integrated network of information patterns, with a certain optimal complexity, especially complex dynamical systems with biological or artificial brains (say, the coming AGIs) could be filled with consciousness at large in order to host an individual “reality cell,” “unit,” or a “node” of consciousness. This kind of individuated unit of consciousness is always endowed with free will within the constraints of the applicable set of rules (“physical laws”), influenced by the larger consciousness system dynamics. Isn’t too naïve to presume that Universal Consciousness would instantiate phenomenality only in the form of “bio”-logical avatars?
“We expected that the hammer of natural selection also comes down randomly, but that is not what we found,” he said. “Rather, it does not act randomly but has a strong bias, favoring those mutations that provide the largest fitness advantage while it smashes down other less beneficial mutations, even though they also provide a benefit to the organism.”
In other words, evolution is not a multitasker when it comes to fixing problems.
“It seems that evolution is myopic,” Venkataram said. “It focuses on the most immediate problem, puts a Band-Aid on and then it moves on to the next problem, without thoroughly finishing the problem it was working on before.”
“It turns out the cells do fix their problems but not in the way we might fix them,” Kaçar added. “In a way, it’s a bit like organizing a delivery truck as it drives down a bumpy road. You can stack and organize only so many boxes at a time before they inevitably get jumbled around. You never really get the chance to make any large, orderly arrangement.”
Why natural selection acts in this way remains to be studied, but what the research showed is that, overall, the process results in what the authors call “evolutionary stalling”—while evolution is busy fixing one problem, it does at the expense of all other issues that need fixing. They conclude that at least in rapidly evolving populations, such as bacteria, adaptation in some modules would stall despite the availability of beneficial mutations. This results in a situation in which organisms can never reach a fully optimized state.
AMOLF researchers have presented a theory that describes the friction between biological filaments that are crosslinked by proteins. Surprisingly, their theory predicts that the friction force scales highly nonlinearly with the number of crosslinkers. The authors believe that cells use this scaling not only to stabilize cellular structures, but also to control their size. The new findings are important for the understanding of the dynamics of cellular structures such as the mitotic spindle, which pulls chromosomes apart during cell division.
Motor proteins versus frictional forces
Many cellular structures consist of long filaments that are crosslinked by motor proteins and non-motor proteins (see figure). These so-called cytoskeletal structures not only give cells their mechanical stability, but also enable them to crawl over surfaces and to pull chromosome apart during cell division. Force generation is typically attributed to motor proteins, which, using chemical fuel, can move the filaments with respect to one another. However, these motor forces are opposed by frictional forces that are generated by passive, non–motor proteins. These frictional forces are a central determinant of the mechanical properties of cytoskeletal structures, and they limit the speed and efficiency with which these structures are formed. Moreover, they can even be vital for their stability, because if the motor forces are not opposed by the friction forces generated by the passive crosslinkers, the structures can even fall apart.
The terrorist or psychopath of the future, however, will have not just the Internet or drones—called “slaughterbots” in this video from the Future of Life Institute—but also synthetic biology, nanotechnology, and advanced AI systems at their disposal. These tools make wreaking havoc across international borders trivial, which raises the question: Will emerging technologies make the state system obsolete? It’s hard to see why not. What justifies the existence of the state, English philosopher Thomas Hobbes argued, is a “social contract.” People give up certain freedoms in exchange for state-provided security, whereby the state acts as a neutral “referee” that can intervene when people get into disputes, punish people who steal and murder, and enforce contracts signed by parties with competing interests.
The trouble is that if anyone anywhere can attack anyone anywhere else, then states will become—and are becoming—unable to satisfy their primary duty as referee.
In The Future of Violence, Benjamin Wittes and Gabriella Blum discuss a disturbing hypothetical scenario. A lone actor in Nigeria, “home to a great deal of spamming and online fraud activity,” tricks women and teenage girls into downloading malware that enables him to monitor and record their activity, for the purposes of blackmail. The real story involved a California man who the FBI eventually caught and sent to prison for six years, but if he had been elsewhere in the world he might have gotten away with it. Many countries, as Wittes and Blum note, “have neither the will nor the means to monitor cybercrime, prosecute offenders, or extradite suspects to the United States.”
As the world’s most popular shoe, flip-flops account for a troubling percentage of plastic waste that ends up in landfills, on seashores and in our oceans. Scientists at the University of California San Diego have spent years working to resolve this problem, and now they have taken a step farther toward accomplishing this mission.
Sticking with their chemistry, the team of researchers formulated polyurethane foams, made from algae oil, to meet commercial specifications for midsole shoes and the foot-bed of flip-flops. The results of their study are published in Bioresource Technology Reports and describe the team’s successful development of these sustainable, consumer-ready and biodegradable materials.
The research was a collaboration between UC San Diego and startup company Algenesis Materials—a materials science and technology company. The project was co-led by graduate student Natasha Gunawan from the labs of professors Michael Burkart (Division of Physical Sciences) and Stephen Mayfield (Division of Biological Sciences), and by Marissa Tessman from Algenesis. It is the latest in a series of recent research publications that collectively, according to Burkart, offer a complete solution to the plastics problem—at least for polyurethanes.
In the first billion years, there was no oxygen on Earth. Life developed in an anoxic environment. Early bacteria probably obtained their energy by breaking down various substances by means of fermentation. However, there also seems to have been a kind of “oxygen-free respiration.” This was suggested by studies on primordial microbes that are still found in anoxic habitats today.
“We already saw ten years ago that there are genes in these microbes that perhaps encode for a primordial respiration enzyme. Since then, we—as well as other groups worldwide—have attempted to prove the existence of this respiratory enzyme and to isolate it. For a long time unsuccessfully because the complex was too fragile and fell apart at each attempt to isolate it from the membrane. We found the fragments, but were unable to piece them together again,” explains Professor Volker Müller from the Department of Molecular Microbiology and Bioenergetics at Goethe University.
Through hard work and perseverance, his doctoral researchers Martin Kuhns and Dragan Trifunovic then achieved a breakthrough in two successive doctoral theses. “In our desperation, we at some point took a heat-loving bacterium, Thermotoga maritima, which grows at temperatures between 60 and 90°C,” explains Trifunovic, who will shortly complete his doctorate. “Thermotoga also contains Rnf genes, and we hoped that the Rnf enzyme in this bacterium would be a bit more stable. Over the years, we then managed to develop a method for isolating the entire Rnf enzyme from the membrane of these bacteria.”
When baboons experience trauma in early life, they have higher levels of stress hormones in adulthood—a potential marker of poor health—than their peers who don’t experience trauma, even if they have strong social relationships as adults, according to a study led by a University of Michigan researcher.
The study examined the links between childhood adversity, adult social relationships and glucocorticoid concentrations. The goal was to determine whether one of the reasons that baboons who experience early trauma live shorter, less healthy lives was because they fail to develop strong social relationships in adulthood, which could be beneficial to health.
U-M biological anthropologist Stacy Rosenbaum and her co-authors found that while early life adversity didn’t strongly affect baboons’ ability to have social relationships, any positive effect of those relationships was much smaller than the large negative effects of early life trauma.
Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.
A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.
“Our findings are quite important and intriguing in a number of ways, and more research is needed to understand how these exotic crystals work and to fulfill their potential,” said senior author Tewodros (Teddy) Asefa, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University-New Brunswick. He’s also a professor in the Department of Chemical and Biochemical Engineering in the School of Engineering.
MetaRomantism and “Evil”
MetaRomanticism can be thought of as an attempt to reform Romanticism, which seems necessary since it seems to be a constant companion to Modernism and it is especially dangerous when it has access to Modernist tools that is uses while refusing to be rational. Perhaps this explains the horrors of Nazism in the 20th century. Nazis were irrationalist Romantics that stole the Modernist tools of Weimar Germany and nearly destroyed human civilization and they attached themselves to Dharma traditions that sometime support versions of annihilationism.
How can MetaRomanticism help?
Perhaps Romantics need to understand why evil exists and MeteRomanticsim should attempt to provide explications that encourage all parties to attempt to be just and a blessing to all families, even if perceived as evil. A version of activities that I think might attract evil are traditions that attempt to extinguish all life because they think it is just and blessing to all sentient beings.
If this is part of a sincere tradition, I would suggest that they cultivating all sentient life so that it can evolve to the point where it can legitimately consent to extinguishing its own sensations — where many faiths do not believe that biological death is the death of sensation. Perhaps like interpretations of Buddhism, they could attempt to convince each other to extinguish all at once voluntarily, but only whenever all sentient beings are able to do so with legitimate consent. However, they should keep in mind that even if all sentient life no longer experienced sensations voluntarily, it would be a highly homogenous result and the mind of Elyon, which can be thought of as Nature or a mind we all share, does not seem to like homogeny, as seen in the form of entropy. What if all the sentient beings tried to voluntary stop experiencing sensation and then life finds a way to start evolving again and sentient life has to wait a long time — with lots of different types of suffering occurring — before sentient beings appear that are wise enough to control their own suffering and the suffering of other sentient beings?